Cosmologie

Evaluation of the impact of systematic effect on the future LiteBIRD satellite mission for the measurement of the Cosmic Microwave Background B-mode polarization

The Cosmic Microwave Background (CMB) radiation is a relic emission from 380 000 years after the Big-Bang. The small temperature fluctuations, resulting from quantum perturbation generated in the early Universe, contain precious information about the physics of the primordial Universe and the cosmological parameters describing in the framework of the standard cosmological model, the dynamics of the Universe and its physical content.

Deep Learning to Find Clusters

The goal of this thesis is to apply deep learning to the detection of galaxy clusters in astronomical surveys.  Clusters are the most massive objects in the universe, hosting hundreds of galaxies and a gaseous intra-cluster medium (ICM) at temperatures of tens of millions of Kelvin.  They are detected as galaxy over-densities in optical/near-infrared (NIR) imaging, through the X-ray emission of their ICM or via the Sunyaev-Zeldovich (SZ) effect, a distortion of the cosmic microwave background spectrum generated by photon-electron scattering in the ICM.  Clusters serve as powerful probes of

Quest for primordial gravitational waves: advanced map-making for the next generation of CMB B-mode polarization data sets.

Many popular theories of the early Universe predict that gravitational waves were generated in the very first moments of its life. These theories generally invoke new physics from beyond the standard model of the particle physics and the primordial gravitational waves are believed to carry clues about the nature of those new physics laws. Detecting the primordial gravitational waves would thus have revolutionary impact on our understanding of cosmology and fundamental physics.

Quest for primordial gravitational waves: advanced data analysis for the next generation of CMB B-mode polarization data sets.

Many popular theories of the early Universe predict that gravitational waves were generated in the very first moments of its life. These theories generally invoke new physics from beyond the standard model of the particle physics and the primordial gravitational waves are believed to carry clues about the nature of those new physics laws. Detecting the primordial gravitational waves would thus have revolutionary impact on our understanding of cosmology and fundamental physics.

Planck/LiteBIRD Phd Opportunity

This PhD project focuses on the physics of the Cosmic Microwave Background both from an observational and from a theoretical perspective. This PhD will be co-supervised by Martin Bucher and Ken Ganga at APC in Paris. It is also envisaged that the student will take part in exchanges with  researchers at the University of Tokyo.

 

Architecture instrumentale optimisée pour la mesure de la polarisation du rayonnement fossile

L’étude des fluctuations polarisées du rayonnement fossile à 3K (Cosmic Microwave Background, CMB) apparaît aujourd’hui comme une voie incontournable pour progresser dans notre compréhension de l’Univers. Le niveau de signal attendu, quelques nK pour le mode B le plus faible, requiert une chaîne de détection à la fois ultra sensible et extrêmement immune aux effets parasites instrumentaux. 

Performances de l’instrument QUBIC pour la mesure de la polarisation du fond diffus cosmologique

L’étude des fluctuations polarisées du rayonnement fossile à 3K (Cosmic Microwave Background, CMB) apparaît aujourd’hui comme une voie incontournable pour progresser dans notre compréhension de l’Univers. Le niveau de signal attendu, quelques nK pour le mode B le plus faible, requiert une chaîne de détection à la fois ultra sensible et extrêmement immune aux effets parasites instrumentaux.

Pages

S'abonner à RSS - Cosmologie