G4XTRTransparentRegRadModel Class Reference

#include <G4XTRTransparentRegRadModel.hh>

Inheritance diagram for G4XTRTransparentRegRadModel:

G4VXTRenergyLoss G4VDiscreteProcess G4VProcess

Public Member Functions

 G4XTRTransparentRegRadModel (G4LogicalVolume *anEnvelope, G4Material *, G4Material *, G4double, G4double, G4int, const G4String &processName="XTRTransparentRegRadModel")
 ~G4XTRTransparentRegRadModel ()
G4double SpectralXTRdEdx (G4double energy)
G4double GetStackFactor (G4double energy, G4double gamma, G4double varAngle)

Detailed Description

Definition at line 48 of file G4XTRTransparentRegRadModel.hh.


Constructor & Destructor Documentation

G4XTRTransparentRegRadModel::G4XTRTransparentRegRadModel ( G4LogicalVolume anEnvelope,
G4Material ,
G4Material ,
G4double  ,
G4double  ,
G4int  ,
const G4String processName = "XTRTransparentRegRadModel" 
)

Definition at line 40 of file G4XTRTransparentRegRadModel.cc.

References G4VXTRenergyLoss::fAlphaGas, G4VXTRenergyLoss::fAlphaPlate, G4VXTRenergyLoss::fExitFlux, G4cout, and G4endl.

00043                                                                       :
00044   G4VXTRenergyLoss(anEnvelope,foilMat,gasMat,a,b,n,processName)
00045 {
00046   G4cout<<"Regular transparent X-ray TR  radiator EM process is called"<<G4endl;
00047 
00048   // Build energy and angular integral spectra of X-ray TR photons from
00049   // a radiator
00050   fExitFlux   = true;
00051   fAlphaPlate = 10000;
00052   fAlphaGas   = 1000;
00053 
00054   //  BuildTable();
00055 }

G4XTRTransparentRegRadModel::~G4XTRTransparentRegRadModel (  ) 

Definition at line 59 of file G4XTRTransparentRegRadModel.cc.

00060 {
00061   ;
00062 }


Member Function Documentation

G4double G4XTRTransparentRegRadModel::GetStackFactor ( G4double  energy,
G4double  gamma,
G4double  varAngle 
) [virtual]

Reimplemented from G4VXTRenergyLoss.

Definition at line 145 of file G4XTRTransparentRegRadModel.cc.

References G4VXTRenergyLoss::fGasThick, G4VXTRenergyLoss::fPlateNumber, G4VXTRenergyLoss::fPlateThick, G4VXTRenergyLoss::GetGasFormationZone(), G4VXTRenergyLoss::GetGasLinearPhotoAbs(), G4VXTRenergyLoss::GetPlateFormationZone(), G4VXTRenergyLoss::GetPlateLinearPhotoAbs(), and G4VXTRenergyLoss::OneInterfaceXTRdEdx().

00147 {
00148   /*
00149   G4double result, Za, Zb, Ma, Mb, sigma;
00150   
00151   Za = GetPlateFormationZone(energy,gamma,varAngle);
00152   Zb = GetGasFormationZone(energy,gamma,varAngle);
00153   Ma = GetPlateLinearPhotoAbs(energy);
00154   Mb = GetGasLinearPhotoAbs(energy);
00155   sigma = Ma*fPlateThick + Mb*fGasThick;
00156 
00157   G4complex Ca(1.0+0.5*fPlateThick*Ma/fAlphaPlate,fPlateThick/Za/fAlphaPlate); 
00158   G4complex Cb(1.0+0.5*fGasThick*Mb/fAlphaGas,fGasThick/Zb/fAlphaGas); 
00159 
00160   G4complex Ha = std::pow(Ca,-fAlphaPlate);  
00161   G4complex Hb = std::pow(Cb,-fAlphaGas);
00162   G4complex H  = Ha*Hb;
00163   G4complex F1 =   (1.0 - Ha)*(1.0 - Hb )/(1.0 - H)
00164                  * G4double(fPlateNumber) ;
00165   G4complex F2 =   (1.0-Ha)*(1.0-Ha)*Hb/(1.0-H)/(1.0-H)
00166                  * (1.0 - std::exp(-0.5*fPlateNumber*sigma)) ;
00167   //    *(1.0 - std::pow(H,fPlateNumber)) ;
00168     G4complex R  = (F1 + F2)*OneInterfaceXTRdEdx(energy,gamma,varAngle);
00169   // G4complex R  = F2*OneInterfaceXTRdEdx(energy,gamma,varAngle);
00170   result       = 2.0*std::real(R);  
00171   return      result;
00172   */
00173    // numerically unstable result
00174 
00175   G4double result, Qa, Qb, Q, aZa, bZb, aMa, bMb, D, sigma; 
00176  
00177   aZa   = fPlateThick/GetPlateFormationZone(energy,gamma,varAngle);
00178   bZb   = fGasThick/GetGasFormationZone(energy,gamma,varAngle);
00179   aMa   = fPlateThick*GetPlateLinearPhotoAbs(energy);
00180   bMb   = fGasThick*GetGasLinearPhotoAbs(energy);
00181   sigma = aMa*fPlateThick + bMb*fGasThick;
00182   Qa    = std::exp(-0.5*aMa);
00183   Qb    = std::exp(-0.5*bMb);
00184   Q     = Qa*Qb;
00185 
00186   G4complex Ha( Qa*std::cos(aZa), -Qa*std::sin(aZa)   );  
00187   G4complex Hb( Qb*std::cos(bZb), -Qb*std::sin(bZb)    );
00188   G4complex H  = Ha*Hb;
00189   G4complex Hs = conj(H);
00190   D            = 1.0 /( (1 - Q)*(1 - Q) + 
00191                   4*Q*std::sin(0.5*(aZa + bZb))*std::sin(0.5*(aZa + bZb)) );
00192   G4complex F1 = (1.0 - Ha)*(1.0 - Hb)*(1.0 - Hs)
00193                  * G4double(fPlateNumber)*D;
00194   G4complex F2 = (1.0 - Ha)*(1.0 - Ha)*Hb*(1.0 - Hs)*(1.0 - Hs)
00195                    // * (1.0 - std::pow(H,fPlateNumber)) * D*D;
00196                  * (1.0 - std::exp(-0.5*fPlateNumber*sigma)) * D*D;
00197   G4complex R  = (F1 + F2)*OneInterfaceXTRdEdx(energy,gamma,varAngle);
00198   result       = 2.0*std::real(R); 
00199   return      result;
00200   
00201 }

G4double G4XTRTransparentRegRadModel::SpectralXTRdEdx ( G4double  energy  )  [virtual]

Reimplemented from G4VXTRenergyLoss.

Definition at line 68 of file G4XTRTransparentRegRadModel.cc.

References G4VXTRenergyLoss::fCompton, G4VXTRenergyLoss::fGamma, G4VXTRenergyLoss::fGasThick, G4VXTRenergyLoss::fPlateNumber, G4VXTRenergyLoss::fPlateThick, G4VXTRenergyLoss::fSigma1, G4VXTRenergyLoss::fSigma2, G4VXTRenergyLoss::GetGasCompton(), G4VXTRenergyLoss::GetGasLinearPhotoAbs(), G4VXTRenergyLoss::GetPlateCompton(), G4VXTRenergyLoss::GetPlateLinearPhotoAbs(), and G4INCL::Math::pi.

00069 {
00070   G4double result, sum = 0., tmp, cof1, cof2, cofMin, cofPHC,aMa, bMb, sigma;
00071   G4int k, kMax, kMin;
00072 
00073   aMa = GetPlateLinearPhotoAbs(energy);
00074   bMb = GetGasLinearPhotoAbs(energy);
00075 
00076   if(fCompton)
00077   {
00078     aMa += GetPlateCompton(energy);
00079     bMb += GetGasCompton(energy);
00080   }
00081   aMa *= fPlateThick;
00082   bMb *= fGasThick;
00083 
00084   sigma = aMa + bMb;
00085    
00086   cofPHC  = 4*pi*hbarc;
00087   tmp     = (fSigma1 - fSigma2)/cofPHC/energy;  
00088   cof1    = fPlateThick*tmp;
00089   cof2    = fGasThick*tmp;
00090 
00091   cofMin  =  energy*(fPlateThick + fGasThick)/fGamma/fGamma;
00092   cofMin += (fPlateThick*fSigma1 + fGasThick*fSigma2)/energy;
00093   cofMin /= cofPHC;
00094 
00095   //  if (fGamma < 1200) kMin = G4int(cofMin);  // 1200 ?
00096   // else               kMin = 1;
00097 
00098 
00099   kMin = G4int(cofMin);
00100   if (cofMin > kMin) kMin++;
00101 
00102   // tmp  = (fPlateThick + fGasThick)*energy*fMaxThetaTR;
00103   // tmp /= cofPHC;
00104   // kMax = G4int(tmp);
00105   // if(kMax < 0) kMax = 0;
00106   // kMax += kMin;
00107   
00108 
00109   kMax = kMin + 19; // 5; // 9; //   kMin + G4int(tmp);
00110 
00111   // tmp /= fGamma;
00112   // if( G4int(tmp) < kMin ) kMin = G4int(tmp);
00113   // G4cout<<"kMin = "<<kMin<<";    kMax = "<<kMax<<G4endl;
00114 
00115   for( k = kMin; k <= kMax; k++ )
00116   {
00117     tmp    = pi*fPlateThick*(k + cof2)/(fPlateThick + fGasThick);
00118     result = (k - cof1)*(k - cof1)*(k + cof2)*(k + cof2);
00119 
00120     if( k == kMin && kMin == G4int(cofMin) )
00121     {
00122       sum   += 0.5*std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
00123     }
00124     else
00125     {
00126       sum   += std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
00127     }
00128     //  G4cout<<"k = "<<k<<";    sum = "<<sum<<G4endl;    
00129   }
00130   result = 4.*( cof1 + cof2 )*( cof1 + cof2 )*sum/energy;
00131   result *= ( 1. - std::exp(-fPlateNumber*sigma) )/( 1. - std::exp(-sigma) );  
00132   return result;
00133 }


The documentation for this class was generated from the following files:
Generated on Mon May 27 17:54:01 2013 for Geant4 by  doxygen 1.4.7