Geant4-11
Public Member Functions | Protected Member Functions | Protected Attributes | Private Member Functions | Private Attributes | Static Private Attributes
G4INCL::NuclearPotential::NuclearPotentialConstant Class Reference

#include <G4INCLNuclearPotentialConstant.hh>

Inheritance diagram for G4INCL::NuclearPotential::NuclearPotentialConstant:
G4INCL::NuclearPotential::INuclearPotential

Public Member Functions

virtual G4double computePotentialEnergy (const Particle *const p) const
 
G4double getDeltaPotential () const
 
G4double getFermiEnergy (const Particle *const p) const
 Return the Fermi energy for a particle. More...
 
G4double getFermiEnergy (const ParticleType t) const
 Return the Fermi energy for a particle type. More...
 
G4double getFermiMomentum (const Particle *const p) const
 Return the Fermi momentum for a particle. More...
 
G4double getFermiMomentum (const ParticleType t) const
 Return the Fermi momentum for a particle type. More...
 
G4double getNucleonPotential () const
 
G4double getSeparationEnergy (const Particle *const p) const
 Return the separation energy for a particle. More...
 
G4double getSeparationEnergy (const ParticleType t) const
 Return the separation energy for a particle type. More...
 
G4bool hasPionPotential () const
 Do we have a pion potential? More...
 
 NuclearPotentialConstant (const G4int A, const G4int Z, const G4bool pionPotential)
 
virtual ~NuclearPotentialConstant ()
 

Protected Member Functions

G4double computeKaonPotentialEnergy (const Particle *const p) const
 Compute the potential energy for the given kaon. More...
 
G4double computePionPotentialEnergy (const Particle *const p) const
 Compute the potential energy for the given pion. More...
 
G4double computePionResonancePotentialEnergy (const Particle *const p) const
 Compute the potential energy for the given pion resonances (Eta, Omega and EtaPrime and Gamma also). More...
 

Protected Attributes

std::map< ParticleType, G4doublefermiEnergy
 
std::map< ParticleType, G4doublefermiMomentum
 
std::map< ParticleType, G4doubleseparationEnergy
 
const G4int theA
 The mass number of the nucleus. More...
 
const G4int theZ
 The charge number of the nucleus. More...
 

Private Member Functions

void initialize ()
 

Private Attributes

const G4bool pionPotential
 
G4double vDelta
 
G4double vKMinus
 
G4double vKPlus
 
G4double vKZero
 
G4double vKZeroBar
 
G4double vLambda
 
G4double vNucleon
 
G4double vPiMinus
 
G4double vPiPlus
 
G4double vPiZero
 
G4double vSigma
 

Static Private Attributes

static const G4double vKMinusDefault = 60.
 
static const G4double vKPlusDefault = -25.
 
static const G4double vPionDefault = 30.6
 

Detailed Description

Definition at line 56 of file G4INCLNuclearPotentialConstant.hh.

Constructor & Destructor Documentation

◆ NuclearPotentialConstant()

G4INCL::NuclearPotential::NuclearPotentialConstant::NuclearPotentialConstant ( const G4int  A,
const G4int  Z,
const G4bool  pionPotential 
)

Definition at line 55 of file G4INCLNuclearPotentialConstant.cc.

56 : INuclearPotential(A, Z, aPionPotential)
57 {
58 initialize();
59 }
const G4int Z[17]
const G4double A[17]
INuclearPotential(const G4int A, const G4int Z, const G4bool pionPot)

References initialize().

◆ ~NuclearPotentialConstant()

G4INCL::NuclearPotential::NuclearPotentialConstant::~NuclearPotentialConstant ( )
virtual

Definition at line 62 of file G4INCLNuclearPotentialConstant.cc.

62 {
63 }

Member Function Documentation

◆ computeKaonPotentialEnergy()

G4double G4INCL::NuclearPotential::INuclearPotential::computeKaonPotentialEnergy ( const Particle *const  p) const
inlineprotectedinherited

Compute the potential energy for the given kaon.

Definition at line 197 of file G4INCLINuclearPotential.hh.

197 {
198// assert(p->getType()==KPlus || p->getType()==KZero || p->getType()==KZeroBar || p->getType()==KMinus|| p->getType()==KShort|| p->getType()==KLong);
199 if(pionPotential && !p->isOutOfWell()) { // if pionPotental false -> kaonPotential false
200 switch( p->getType() ) {
201 case KPlus:
202 return vKPlus;
203 break;
204 case KZero:
205 return vKZero;
206 break;
207 case KZeroBar:
208 return vKZeroBar;
209 break;
210 case KShort:
211 case KLong:
212 return 0.0; // Should never be in the nucleus
213 break;
214 case KMinus:
215 return vKMinus;
216 break;
217 default:
218 return 0.0;
219 break;
220 }
221 }
222 else
223 return 0.0;
224 }

References G4INCL::Particle::getType(), G4INCL::Particle::isOutOfWell(), G4INCL::KLong, G4INCL::KMinus, G4INCL::KPlus, G4INCL::KShort, G4INCL::KZero, G4INCL::KZeroBar, G4INCL::NuclearPotential::INuclearPotential::pionPotential, G4INCL::NuclearPotential::INuclearPotential::vKMinus, G4INCL::NuclearPotential::INuclearPotential::vKPlus, G4INCL::NuclearPotential::INuclearPotential::vKZero, and G4INCL::NuclearPotential::INuclearPotential::vKZeroBar.

Referenced by computePotentialEnergy(), and G4INCL::NuclearPotential::NuclearPotentialIsospin::computePotentialEnergy().

◆ computePionPotentialEnergy()

G4double G4INCL::NuclearPotential::INuclearPotential::computePionPotentialEnergy ( const Particle *const  p) const
inlineprotectedinherited

Compute the potential energy for the given pion.

Definition at line 173 of file G4INCLINuclearPotential.hh.

173 {
174// assert(p->getType()==PiPlus || p->getType()==PiZero || p->getType()==PiMinus);
175 if(pionPotential && !p->isOutOfWell()) {
176 switch( p->getType() ) {
177 case PiPlus:
178 return vPiPlus;
179 break;
180 case PiZero:
181 return vPiZero;
182 break;
183 case PiMinus:
184 return vPiMinus;
185 break;
186 default: // Pion potential is defined and non-zero only for pions
187 return 0.0;
188 break;
189 }
190 }
191 else
192 return 0.0;
193 }

References G4INCL::Particle::getType(), G4INCL::Particle::isOutOfWell(), G4INCL::PiMinus, G4INCL::NuclearPotential::INuclearPotential::pionPotential, G4INCL::PiPlus, G4INCL::PiZero, G4INCL::NuclearPotential::INuclearPotential::vPiMinus, G4INCL::NuclearPotential::INuclearPotential::vPiPlus, and G4INCL::NuclearPotential::INuclearPotential::vPiZero.

Referenced by computePotentialEnergy(), and G4INCL::NuclearPotential::NuclearPotentialIsospin::computePotentialEnergy().

◆ computePionResonancePotentialEnergy()

G4double G4INCL::NuclearPotential::INuclearPotential::computePionResonancePotentialEnergy ( const Particle *const  p) const
inlineprotectedinherited

Compute the potential energy for the given pion resonances (Eta, Omega and EtaPrime and Gamma also).

Definition at line 228 of file G4INCLINuclearPotential.hh.

228 {
229// assert(p->getType()==Eta || p->getType()==Omega || p->getType()==EtaPrime || p->getType()==Photon);
230 if(pionPotential && !p->isOutOfWell()) {
231 switch( p->getType() ) {
232 case Eta:
233//jcd return vPiZero;
234//jcd return vPiZero*1.5;
235 return 0.0; // (JCD: seems to give better results)
236 break;
237 case Omega:
238 return 15.0; // S.Friedrich et al., Physics Letters B736(2014)26-32. (V. Metag in Hyperfine Interact (2015) 234:25-31 gives 29 MeV)
239 break;
240 case EtaPrime:
241 return 37.0; // V. Metag in Hyperfine Interact (2015) 234:25-31
242 break;
243 case Photon:
244 return 0.0;
245 break;
246 default:
247 return 0.0;
248 break;
249 }
250 }
251 else
252 return 0.0;
253 }

References G4INCL::Eta, G4INCL::EtaPrime, G4INCL::Particle::getType(), G4INCL::Particle::isOutOfWell(), G4INCL::Omega, G4INCL::Photon, and G4INCL::NuclearPotential::INuclearPotential::pionPotential.

Referenced by computePotentialEnergy(), and G4INCL::NuclearPotential::NuclearPotentialIsospin::computePotentialEnergy().

◆ computePotentialEnergy()

G4double G4INCL::NuclearPotential::NuclearPotentialConstant::computePotentialEnergy ( const Particle *const  p) const
virtual

Implements G4INCL::NuclearPotential::INuclearPotential.

Definition at line 170 of file G4INCLNuclearPotentialConstant.cc.

170 {
171
172 switch( particle->getType() )
173 {
174 case Proton:
175 case Neutron:
176 return vNucleon;
177 break;
178
179 case PiPlus:
180 case PiZero:
181 case PiMinus:
182 return computePionPotentialEnergy(particle);
183 break;
184
185 case Eta:
186 case Omega:
187 case EtaPrime:
189 break;
190
191 case SigmaPlus:
192 case SigmaZero:
193 case SigmaMinus:
194 return vSigma;
195 break;
196 case Lambda:
197 return vLambda;
198 break;
199
200 case KPlus:
201 case KZero:
202 case KZeroBar:
203 case KMinus:
204 return computeKaonPotentialEnergy(particle);
205 break;
206
207 case Photon:
208 return 0.0;
209 break;
210
211 case DeltaPlusPlus:
212 case DeltaPlus:
213 case DeltaZero:
214 case DeltaMinus:
215 return vDelta;
216 break;
217 case UnknownParticle:
218 INCL_ERROR("Trying to compute potential energy of an unknown particle.");
219 return 0.0;
220 break;
221 default:
222 INCL_ERROR("Trying to compute potential energy of a malformed particle.");
223 return 0.0;
224 break;
225 }
226 }
#define INCL_ERROR(x)
G4double computePionPotentialEnergy(const Particle *const p) const
Compute the potential energy for the given pion.
G4double computePionResonancePotentialEnergy(const Particle *const p) const
Compute the potential energy for the given pion resonances (Eta, Omega and EtaPrime and Gamma also).
G4double computeKaonPotentialEnergy(const Particle *const p) const
Compute the potential energy for the given kaon.

References G4INCL::NuclearPotential::INuclearPotential::computeKaonPotentialEnergy(), G4INCL::NuclearPotential::INuclearPotential::computePionPotentialEnergy(), G4INCL::NuclearPotential::INuclearPotential::computePionResonancePotentialEnergy(), G4INCL::DeltaMinus, G4INCL::DeltaPlus, G4INCL::DeltaPlusPlus, G4INCL::DeltaZero, G4INCL::Eta, G4INCL::EtaPrime, G4INCL::Particle::getType(), INCL_ERROR, G4INCL::KMinus, G4INCL::KPlus, G4INCL::KZero, G4INCL::KZeroBar, G4INCL::Lambda, G4INCL::Neutron, G4INCL::Omega, G4INCL::Photon, G4INCL::PiMinus, G4INCL::PiPlus, G4INCL::PiZero, G4INCL::Proton, G4INCL::SigmaMinus, G4INCL::SigmaPlus, G4INCL::SigmaZero, G4INCL::UnknownParticle, vDelta, vLambda, vNucleon, and vSigma.

◆ getDeltaPotential()

G4double G4INCL::NuclearPotential::NuclearPotentialConstant::getDeltaPotential ( ) const
inline

Definition at line 63 of file G4INCLNuclearPotentialConstant.hh.

63{ return vDelta; }

References vDelta.

◆ getFermiEnergy() [1/2]

G4double G4INCL::NuclearPotential::INuclearPotential::getFermiEnergy ( const Particle *const  p) const
inlineinherited

Return the Fermi energy for a particle.

Parameters
ppointer to a Particle
Returns
Fermi energy for that particle type

Definition at line 105 of file G4INCLINuclearPotential.hh.

105 {
106 std::map<ParticleType, G4double>::const_iterator i = fermiEnergy.find(p->getType());
107// assert(i!=fermiEnergy.end());
108 return i->second;
109 }
std::map< ParticleType, G4double > fermiEnergy

References G4INCL::NuclearPotential::INuclearPotential::fermiEnergy, and G4INCL::Particle::getType().

Referenced by G4INCL::NuclearPotential::NuclearPotentialEnergyIsospin::computePotentialEnergy(), G4INCL::NuclearPotential::NuclearPotentialEnergyIsospinSmooth::computePotentialEnergy(), G4INCL::ParticleEntryChannel::fillFinalState(), G4INCL::SurfaceAvatar::getChannel(), G4INCL::NuclearPotential::INuclearPotential::getFermiMomentum(), and G4INCL::CDPP::processOneParticle().

◆ getFermiEnergy() [2/2]

G4double G4INCL::NuclearPotential::INuclearPotential::getFermiEnergy ( const ParticleType  t) const
inlineinherited

Return the Fermi energy for a particle type.

Parameters
tparticle type
Returns
Fermi energy for that particle type

Definition at line 116 of file G4INCLINuclearPotential.hh.

116 {
117 std::map<ParticleType, G4double>::const_iterator i = fermiEnergy.find(t);
118// assert(i!=fermiEnergy.end());
119 return i->second;
120 }

References G4INCL::NuclearPotential::INuclearPotential::fermiEnergy.

◆ getFermiMomentum() [1/2]

G4double G4INCL::NuclearPotential::INuclearPotential::getFermiMomentum ( const Particle *const  p) const
inlineinherited

Return the Fermi momentum for a particle.

Parameters
ppointer to a Particle
Returns
Fermi momentum for that particle type

Definition at line 149 of file G4INCLINuclearPotential.hh.

149 {
150 if(p->isDelta()) {
151 const G4double Tf = getFermiEnergy(p), mass = p->getMass();
152 return std::sqrt(Tf*(Tf+2.*mass));
153 } else {
154 std::map<ParticleType, G4double>::const_iterator i = fermiMomentum.find(p->getType());
155// assert(i!=fermiMomentum.end());
156 return i->second;
157 }
158 }
double G4double
Definition: G4Types.hh:83
std::map< ParticleType, G4double > fermiMomentum
G4double getFermiEnergy(const Particle *const p) const
Return the Fermi energy for a particle.

References G4INCL::NuclearPotential::INuclearPotential::fermiMomentum, G4INCL::NuclearPotential::INuclearPotential::getFermiEnergy(), G4INCL::Particle::getMass(), G4INCL::Particle::getType(), and G4INCL::Particle::isDelta().

Referenced by G4INCL::PauliStandard::getBlockingProbability(), G4INCL::Nucleus::getSurfaceRadius(), G4INCL::ParticleSampler::sampleOneParticleWithFuzzyRPCorrelation(), and G4INCL::ParticleSampler::sampleOneParticleWithRPCorrelation().

◆ getFermiMomentum() [2/2]

G4double G4INCL::NuclearPotential::INuclearPotential::getFermiMomentum ( const ParticleType  t) const
inlineinherited

Return the Fermi momentum for a particle type.

Parameters
tparticle type
Returns
Fermi momentum for that particle type

Definition at line 165 of file G4INCLINuclearPotential.hh.

165 {
166// assert(t!=DeltaPlusPlus && t!=DeltaPlus && t!=DeltaZero && t!=DeltaMinus);
167 std::map<ParticleType, G4double>::const_iterator i = fermiMomentum.find(t);
168 return i->second;
169 }

References G4INCL::NuclearPotential::INuclearPotential::fermiMomentum.

◆ getNucleonPotential()

G4double G4INCL::NuclearPotential::NuclearPotentialConstant::getNucleonPotential ( ) const
inline

Definition at line 62 of file G4INCLNuclearPotentialConstant.hh.

62{ return vNucleon; }

References vNucleon.

◆ getSeparationEnergy() [1/2]

G4double G4INCL::NuclearPotential::INuclearPotential::getSeparationEnergy ( const Particle *const  p) const
inlineinherited

Return the separation energy for a particle.

Parameters
ppointer to a Particle
Returns
separation energy for that particle type

Definition at line 127 of file G4INCLINuclearPotential.hh.

127 {
128 std::map<ParticleType, G4double>::const_iterator i = separationEnergy.find(p->getType());
129// assert(i!=separationEnergy.end());
130 return i->second;
131 }
std::map< ParticleType, G4double > separationEnergy

References G4INCL::Particle::getType(), and G4INCL::NuclearPotential::INuclearPotential::separationEnergy.

Referenced by G4INCL::Nucleus::computeSeparationEnergyBalance(), G4INCL::Nucleus::Nucleus(), and G4INCL::CDPP::processOneParticle().

◆ getSeparationEnergy() [2/2]

G4double G4INCL::NuclearPotential::INuclearPotential::getSeparationEnergy ( const ParticleType  t) const
inlineinherited

Return the separation energy for a particle type.

Parameters
tparticle type
Returns
separation energy for that particle type

Definition at line 138 of file G4INCLINuclearPotential.hh.

138 {
139 std::map<ParticleType, G4double>::const_iterator i = separationEnergy.find(t);
140// assert(i!=separationEnergy.end());
141 return i->second;
142 }

References G4INCL::NuclearPotential::INuclearPotential::separationEnergy.

◆ hasPionPotential()

G4bool G4INCL::NuclearPotential::INuclearPotential::hasPionPotential ( ) const
inlineinherited

Do we have a pion potential?

Definition at line 96 of file G4INCLINuclearPotential.hh.

96{ return pionPotential; }

References G4INCL::NuclearPotential::INuclearPotential::pionPotential.

Referenced by G4INCL::Nucleus::decayInsideDeltas().

◆ initialize()

void G4INCL::NuclearPotential::NuclearPotentialConstant::initialize ( )
private

Definition at line 65 of file G4INCLNuclearPotentialConstant.cc.

65 {
68
69 const G4double theFermiMomentum = ParticleTable::getFermiMomentum(theA,theZ);
70
71 fermiMomentum[Proton] = theFermiMomentum;
72 const G4double theProtonFermiEnergy = std::sqrt(theFermiMomentum*theFermiMomentum + mp*mp) - mp;
73 fermiEnergy[Proton] = theProtonFermiEnergy;
74
75 fermiMomentum[Neutron] = theFermiMomentum;
76 const G4double theNeutronFermiEnergy = std::sqrt(theFermiMomentum*theFermiMomentum + mn*mn) - mn;
77 fermiEnergy[Neutron] = theNeutronFermiEnergy;
78
80 fermiEnergy[DeltaPlus] = fermiEnergy.find(Proton)->second;
83
84 fermiEnergy[SigmaPlus] = fermiEnergy.find(Proton)->second;
85 fermiEnergy[SigmaZero] = fermiEnergy.find(Proton)->second;
87
88 fermiEnergy[Lambda] = fermiEnergy.find(Neutron)->second;
89
90
92 separationEnergy[Proton] = theAverageSeparationEnergy;
93 separationEnergy[Neutron] = theAverageSeparationEnergy;
94
95 // Use separation energies from the ParticleTable
96 vNucleon = 0.5*(theProtonFermiEnergy + theNeutronFermiEnergy) + theAverageSeparationEnergy;
98 vSigma = -16.; // Caution: repulsive potential for Sigmas
99 vLambda = 28.;
104
108
109 separationEnergy[Eta] = 0.;
113
124
125 INCL_DEBUG("Table of separation energies [MeV] for A=" << theA << ", Z=" << theZ << ":" << '\n'
126 << " proton: " << separationEnergy[Proton] << '\n'
127 << " neutron: " << separationEnergy[Neutron] << '\n'
128 << " delta++: " << separationEnergy[DeltaPlusPlus] << '\n'
129 << " delta+: " << separationEnergy[DeltaPlus] << '\n'
130 << " delta0: " << separationEnergy[DeltaZero] << '\n'
131 << " delta-: " << separationEnergy[DeltaMinus] << '\n'
132 << " pi+: " << separationEnergy[PiPlus] << '\n'
133 << " pi0: " << separationEnergy[PiZero] << '\n'
134 << " pi-: " << separationEnergy[PiMinus] << '\n'
135 << " eta: " << separationEnergy[Eta] << '\n'
136 << " omega: " << separationEnergy[Omega] << '\n'
137 << " etaprime:" << separationEnergy[EtaPrime] << '\n'
138 << " photon: " << separationEnergy[Photon] << '\n'
139 << " lambda: " << separationEnergy[Lambda] << '\n'
140 << " sigmaplus: " << separationEnergy[SigmaPlus] << '\n'
141 << " sigmazero: " << separationEnergy[SigmaZero] << '\n'
142 << " sigmaminus: " << separationEnergy[SigmaMinus] << '\n'
143 << " kplus: " << separationEnergy[KPlus] << '\n'
144 << " kzero: " << separationEnergy[KZero] << '\n'
145 << " kzerobar: " << separationEnergy[KZeroBar] << '\n'
146 << " kminus: " << separationEnergy[KMinus] << '\n'
147 << " kshort: " << separationEnergy[KShort] << '\n'
148 << " klong: " << separationEnergy[KLong] << '\n'
149 );
150
151 INCL_DEBUG("Table of Fermi energies [MeV] for A=" << theA << ", Z=" << theZ << ":" << '\n'
152 << " proton: " << fermiEnergy[Proton] << '\n'
153 << " neutron: " << fermiEnergy[Neutron] << '\n'
154 << " delta++: " << fermiEnergy[DeltaPlusPlus] << '\n'
155 << " delta+: " << fermiEnergy[DeltaPlus] << '\n'
156 << " delta0: " << fermiEnergy[DeltaZero] << '\n'
157 << " delta-: " << fermiEnergy[DeltaMinus] << '\n'
158 << " lambda: " << fermiEnergy[Lambda] << '\n'
159 << " sigmaplus: " << fermiEnergy[SigmaPlus] << '\n'
160 << " sigmazero: " << fermiEnergy[SigmaZero] << '\n'
161 << " sigmaminus: " << fermiEnergy[SigmaMinus] << '\n'
162 );
163
164 INCL_DEBUG("Table of Fermi momenta [MeV/c] for A=" << theA << ", Z=" << theZ << ":" << '\n'
165 << " proton: " << fermiMomentum[Proton] << '\n'
166 << " neutron: " << fermiMomentum[Neutron] << '\n'
167 );
168 }
#define INCL_DEBUG(x)
const G4int theA
The mass number of the nucleus.
const G4int theZ
The charge number of the nucleus.
G4ThreadLocal FermiMomentumFn getFermiMomentum
G4ThreadLocal SeparationEnergyFn getSeparationEnergy
Static pointer to the separation-energy function.
G4double getINCLMass(const G4int A, const G4int Z, const G4int S)
Get INCL nuclear mass (in MeV/c^2)

References G4INCL::DeltaMinus, G4INCL::DeltaPlus, G4INCL::DeltaPlusPlus, G4INCL::DeltaZero, G4INCL::Eta, G4INCL::EtaPrime, G4INCL::NuclearPotential::INuclearPotential::fermiEnergy, G4INCL::NuclearPotential::INuclearPotential::fermiMomentum, G4INCL::ParticleTable::getFermiMomentum, G4INCL::ParticleTable::getINCLMass(), G4INCL::ParticleTable::getSeparationEnergy, INCL_DEBUG, G4INCL::KLong, G4INCL::KMinus, G4INCL::KPlus, G4INCL::KShort, G4INCL::KZero, G4INCL::KZeroBar, G4INCL::Lambda, G4INCL::Neutron, G4INCL::Omega, G4INCL::Photon, G4INCL::PiMinus, G4INCL::PiPlus, G4INCL::PiZero, G4INCL::Proton, G4INCL::NuclearPotential::INuclearPotential::separationEnergy, G4INCL::SigmaMinus, G4INCL::SigmaPlus, G4INCL::SigmaZero, G4INCL::NuclearPotential::INuclearPotential::theA, G4INCL::NuclearPotential::INuclearPotential::theZ, vDelta, vLambda, vNucleon, and vSigma.

Referenced by NuclearPotentialConstant().

Field Documentation

◆ fermiEnergy

std::map<ParticleType,G4double> G4INCL::NuclearPotential::INuclearPotential::fermiEnergy
protectedinherited

◆ fermiMomentum

std::map<ParticleType,G4double> G4INCL::NuclearPotential::INuclearPotential::fermiMomentum
protectedinherited

◆ pionPotential

const G4bool G4INCL::NuclearPotential::INuclearPotential::pionPotential
privateinherited

◆ separationEnergy

std::map<ParticleType,G4double> G4INCL::NuclearPotential::INuclearPotential::separationEnergy
protectedinherited

◆ theA

const G4int G4INCL::NuclearPotential::INuclearPotential::theA
protectedinherited

◆ theZ

const G4int G4INCL::NuclearPotential::INuclearPotential::theZ
protectedinherited

◆ vDelta

G4double G4INCL::NuclearPotential::NuclearPotentialConstant::vDelta
private

◆ vKMinus

G4double G4INCL::NuclearPotential::INuclearPotential::vKMinus
privateinherited

◆ vKMinusDefault

const G4double G4INCL::NuclearPotential::INuclearPotential::vKMinusDefault = 60.
staticprivateinherited

◆ vKPlus

G4double G4INCL::NuclearPotential::INuclearPotential::vKPlus
privateinherited

◆ vKPlusDefault

const G4double G4INCL::NuclearPotential::INuclearPotential::vKPlusDefault = -25.
staticprivateinherited

◆ vKZero

G4double G4INCL::NuclearPotential::INuclearPotential::vKZero
privateinherited

◆ vKZeroBar

G4double G4INCL::NuclearPotential::INuclearPotential::vKZeroBar
privateinherited

◆ vLambda

G4double G4INCL::NuclearPotential::NuclearPotentialConstant::vLambda
private

Definition at line 68 of file G4INCLNuclearPotentialConstant.hh.

Referenced by computePotentialEnergy(), and initialize().

◆ vNucleon

G4double G4INCL::NuclearPotential::NuclearPotentialConstant::vNucleon
private

◆ vPiMinus

G4double G4INCL::NuclearPotential::INuclearPotential::vPiMinus
privateinherited

◆ vPionDefault

const G4double G4INCL::NuclearPotential::INuclearPotential::vPionDefault = 30.6
staticprivateinherited

◆ vPiPlus

G4double G4INCL::NuclearPotential::INuclearPotential::vPiPlus
privateinherited

◆ vPiZero

G4double G4INCL::NuclearPotential::INuclearPotential::vPiZero
privateinherited

◆ vSigma

G4double G4INCL::NuclearPotential::NuclearPotentialConstant::vSigma
private

Definition at line 68 of file G4INCLNuclearPotentialConstant.hh.

Referenced by computePotentialEnergy(), and initialize().


The documentation for this class was generated from the following files: