Geant4-11
Public Member Functions | Private Member Functions | Private Attributes | Static Private Attributes
G4INCL::NNToMissingStrangenessChannel Class Reference

#include <G4INCLNNToMissingStrangenessChannel.hh>

Inheritance diagram for G4INCL::NNToMissingStrangenessChannel:
G4INCL::IChannel

Public Member Functions

void fillFinalState (FinalState *fs)
 
FinalStategetFinalState ()
 
 NNToMissingStrangenessChannel (Particle *, Particle *)
 
virtual ~NNToMissingStrangenessChannel ()
 

Private Member Functions

 INCL_DECLARE_ALLOCATION_POOL (NNToMissingStrangenessChannel)
 

Private Attributes

Particleparticle1
 
Particleparticle2
 

Static Private Attributes

static const G4double angularSlope = 1.
 

Detailed Description

Definition at line 47 of file G4INCLNNToMissingStrangenessChannel.hh.

Constructor & Destructor Documentation

◆ NNToMissingStrangenessChannel()

G4INCL::NNToMissingStrangenessChannel::NNToMissingStrangenessChannel ( Particle p1,
Particle p2 
)

◆ ~NNToMissingStrangenessChannel()

G4INCL::NNToMissingStrangenessChannel::~NNToMissingStrangenessChannel ( )
virtual

Definition at line 55 of file G4INCLNNToMissingStrangenessChannel.cc.

55{}

Member Function Documentation

◆ fillFinalState()

void G4INCL::NNToMissingStrangenessChannel::fillFinalState ( FinalState fs)
virtual

Implements G4INCL::IChannel.

Definition at line 57 of file G4INCLNNToMissingStrangenessChannel.cc.

57 {
58
61// assert(sqrtS > 3100); // ! > 3047.34. Not supposed to be under 3,626 GeV.
62
64// assert(iso == -2 || iso == 0 || iso == 2);
65 G4int iso_system = 0;
66 G4int available_iso = 0;
67 G4int nbr_pions = 0;
68 G4int min_pions = 0;
69 G4int max_pions = 0;
70
71 G4double rdm = Random::shoot();
72
73 G4int nbr_particle = 3;
74
75 if(rdm < 0.35){
76 // N-K-Lambda chosen
78 available_iso = 2;
79 min_pions = 3;
81 }
82 else if((iso == 0 && rdm < 0.55) || rdm < 0.5){
83 // N-N-K-Kb chosen
84 nbr_particle++;
85 available_iso = 4;
86 min_pions = 1;
88 }
89 else{
90 // N-K-Sigma chosen
91 available_iso = 4;
92 min_pions = 3;
94 }
95 /* Gaussian noise + mean value nbr pions fonction energy (choice)*/
96 G4double intermediaire = min_pions + Random::gauss(2) + std::sqrt(pLab-5);
97 nbr_pions = std::min(max_pions,std::max(min_pions,G4int(intermediaire )));
98
99 available_iso += nbr_pions*2;
100 nbr_particle += nbr_pions;
101
102 ParticleList list;
103 ParticleType PionType = PiZero;
104 const ThreeVector &rcol1 = particle1->getPosition();
105 const ThreeVector zero;
106 Particle *kaon = new Particle(KPlus,zero,rcol1);
107
108 for(Int_t i=0; i<nbr_pions; i++){
109 Particle *pion = new Particle(PionType,zero,rcol1);
110 if(available_iso-std::abs(iso-iso_system) >= 4){ // pp(pn) pip:0.40(0.3) piz:0.35(0.4) pim:0.25(0.3)
111 rdm = Random::shoot();
112 if(((iso == 0) && rdm < 0.3) || ((iso == -2) && rdm < 0.40) || rdm < 0.25){
113 pion->setType(PiMinus);
114 iso_system -= 2;
115 available_iso -= 2;
116 }
117 else if(((iso == 0) && rdm < 0.7) || ((iso == -2) && rdm < 0.75) || rdm < 0.60){
118 pion->setType(PiZero);
119 available_iso -= 2;
120 }
121 else{
122 pion->setType(PiPlus);
123 iso_system += 2;
124 available_iso -= 2;
125 }
126 }
127 else if(available_iso-std::abs(iso-iso_system) == 2){
128 rdm = Random::shoot();
129 // pn pp too high (nn too low) -> PiMinus(PiPlus) pp too low (nn too high) -> PiPlus(PiMinus)
130 if(((iso == 0) && (rdm*0.7 < 0.3)) || ((rdm*0.60 < 0.25) && (Math::sign(iso-iso_system)*2-iso != 0)) || ((rdm*0.75 < 0.40) && (Math::sign(iso-iso_system)*2+iso != 0) && (iso != 0))){
131 pion->setType(ParticleTable::getPionType(Math::sign(iso-iso_system)*2));
132 iso_system += Math::sign(iso-iso_system)*2;
133 available_iso -= 2;
134 }
135 else{
136 PionType = PiZero;
137 available_iso -= 2;
138 }
139 }
140 else if(available_iso-std::abs(iso-iso_system) == 0){
141 pion->setType(ParticleTable::getPionType(Math::sign(iso-iso_system)*2));
142 iso_system += Math::sign(iso-iso_system)*2;
143 available_iso -= 2;
144 }
145 else INCL_ERROR("Pion Generation Problem in NNToMissingStrangenessChannel" << '\n');
146 list.push_back(pion);
147 }
148
149 if(particle2->isLambda()){ // N-K-Lambda
150// assert(available_iso == 2);
151 if(std::abs(iso-iso_system) == 2){
152 particle1->setType(ParticleTable::getNucleonType((iso-iso_system)/2));
153 kaon->setType(ParticleTable::getKaonType((iso-iso_system)/2));
154 }
155 else if(std::abs(iso-iso_system) == 0){
156 rdm = G4int(Random::shoot()*2.)*2-1;
158 kaon->setType(ParticleTable::getKaonType(G4int(-rdm)));
159 }
160 else INCL_ERROR("Isospin non-conservation in NNToMissingStrangenessChannel" << '\n');
161 }
162 else if(min_pions == 1){ // N-N-K-Kb chosen
163// assert(available_iso == 4);
164 Particle *antikaon = new Particle(KMinus,zero,rcol1);
165 if(std::abs(iso-iso_system) == 4){
166 particle1->setType(ParticleTable::getNucleonType((iso-iso_system)/4));
167 particle2->setType(ParticleTable::getNucleonType((iso-iso_system)/4));
168 kaon->setType(ParticleTable::getKaonType((iso-iso_system)/4));
169 antikaon->setType(ParticleTable::getAntiKaonType((iso-iso_system)/4));
170 }
171 else if(std::abs(iso-iso_system) == 2){ // choice: kaon type free, nucleon type fixed
172 rdm = G4int(Random::shoot()*2.)*2-1;
173 particle1->setType(ParticleTable::getNucleonType((iso-iso_system)/2));
174 particle2->setType(ParticleTable::getNucleonType((iso-iso_system)/2));
175 kaon->setType(ParticleTable::getKaonType(G4int(rdm)));
176 antikaon->setType(ParticleTable::getAntiKaonType(G4int(-rdm)));
177 }
178 else if(std::abs(iso-iso_system) == 0){ // particle1 3/4 proton, 1/4 neutron; particle2 1/4 proton, 3/4 neutron
179 rdm = G4int(Random::shoot()*2.)*2-1;
180 G4double rdm2 = G4int(Random::shoot()*2.)*2-1;
183 kaon->setType(ParticleTable::getKaonType(-G4int(rdm)));
184 antikaon->setType(ParticleTable::getAntiKaonType(-G4int(rdm2)));
185 }
186 else INCL_ERROR("Isospin non-conservation in NNToMissingStrangenessChannel" << '\n');
187 list.push_back(antikaon);
188 nbr_pions += 1; // need for addCreatedParticle loop
189 }
190 else{// N-K-Sigma
191// assert(available_iso == 4);
192 if(std::abs(iso-iso_system) == 4){
193 particle1->setType(ParticleTable::getNucleonType((iso-iso_system)/4));
194 particle2->setType(ParticleTable::getSigmaType((iso-iso_system)/2));
195 kaon->setType(ParticleTable::getKaonType((iso-iso_system)/4));
196 }
197 else if(std::abs(iso-iso_system) == 2){ // choice: sigma quasi-free, kaon type semi-free, nucleon type fixed
198 rdm = Random::shoot();
199 // pp(pn) sp:0.42(0.23) sz:0.51(0.54) sm:0.07(0.23)
200 if(((iso == 0) && (rdm*0.77 < 0.23)) || ((rdm*0.58 < 0.07) && (Math::sign(iso-iso_system)*2-iso != 0)) || ((rdm*0.93 < 0.42) && (Math::sign(iso-iso_system)*2+iso != 0) && (iso != 0))){
202 rdm = G4int(Random::shoot()*2.)*2-1;
204 kaon->setType(ParticleTable::getKaonType(-G4int(rdm)));
205 }
206 else{
208 particle1->setType(ParticleTable::getNucleonType((iso-iso_system)/2));
209 kaon->setType(ParticleTable::getKaonType((iso-iso_system)/2));
210 }
211 }
212 else if(std::abs(iso-iso_system) == 0){ // choice: sigma free, kaontype semi-free, nucleon type fixed
213 if(((iso == 0) && rdm < 0.23) || ((iso == 2) && rdm < 0.42) || rdm < 0.07){
216 kaon->setType(KZero);
217 }
218 else if(((iso == 0) && rdm < 0.77) || ((iso == 2) && rdm < 0.93) || rdm < 0.58){
220 rdm = G4int(Random::shoot()*2.)*2-1;
222 kaon->setType(ParticleTable::getKaonType(-G4int(rdm)));
223 }
224 else{
227 kaon->setType(KPlus);
228 }
229 }
230 else INCL_ERROR("Isospin non-conservation in NNToMissingStrangenessChannel" << '\n');
231 }
232
233 list.push_back(particle1);
234 list.push_back(particle2);
235 list.push_back(kaon);
236
237 PhaseSpaceGenerator::generateBiased(sqrtS, list, list.size()-3, angularSlope);
238
239 fs->addModifiedParticle(particle1);
240 fs->addModifiedParticle(particle2);
241 fs->addCreatedParticle(kaon);
242 for(Int_t i=0; i<nbr_pions; i++) fs->addCreatedParticle(list[i]);
243
244 }
#define INCL_ERROR(x)
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
G4bool isLambda() const
Is this a Lambda?
const G4INCL::ThreeVector & getPosition() const
G4INCL::ParticleType getType() const
void setType(ParticleType t)
G4double totalEnergyInCM(Particle const *const p1, Particle const *const p2)
G4double momentumInLab(Particle const *const p1, Particle const *const p2)
gives the momentum in the lab frame of two particles.
T max(const T t1, const T t2)
brief Return the largest of the two arguments
T min(const T t1, const T t2)
brief Return the smallest of the two arguments
G4int sign(const T t)
ParticleType getKaonType(const G4int isosp)
Get the type of kaon.
ParticleType getSigmaType(const G4int isosp)
Get the type of sigma.
G4double getINCLMass(const G4int A, const G4int Z, const G4int S)
Get INCL nuclear mass (in MeV/c^2)
G4int getIsospin(const ParticleType t)
Get the isospin of a particle.
ParticleType getNucleonType(const G4int isosp)
Get the type of nucleon.
ParticleType getPionType(const G4int isosp)
Get the type of pion.
ParticleType getAntiKaonType(const G4int isosp)
Get the type of antikaon.
void generateBiased(const G4double sqrtS, ParticleList &particles, const size_t index, const G4double slope)
Generate a biased event in the CM system.
G4double gauss(G4double sigma=1.)
G4double shoot()
Definition: G4INCLRandom.cc:93
G4int Int_t
G4bool pion(G4int ityp)
static const G4LorentzVector zero(0., 0., 0., 0.)

References G4INCL::FinalState::addCreatedParticle(), G4INCL::FinalState::addModifiedParticle(), angularSlope, G4INCL::Random::gauss(), G4INCL::PhaseSpaceGenerator::generateBiased(), G4INCL::ParticleTable::getAntiKaonType(), G4INCL::ParticleTable::getINCLMass(), G4INCL::ParticleTable::getIsospin(), G4INCL::ParticleTable::getKaonType(), G4INCL::ParticleTable::getNucleonType(), G4INCL::ParticleTable::getPionType(), G4INCL::Particle::getPosition(), G4INCL::ParticleTable::getSigmaType(), G4INCL::Particle::getType(), INCL_ERROR, G4INCL::Particle::isLambda(), G4INCL::KMinus, G4INCL::KPlus, G4INCL::KZero, G4INCL::Lambda, G4INCL::Math::max(), G4INCL::Math::min(), G4INCL::KinematicsUtils::momentumInLab(), G4INCL::Neutron, particle1, particle2, G4INCL::PiMinus, G4InuclParticleNames::pion(), G4INCL::PiPlus, G4INCL::PiZero, G4INCL::Proton, G4INCL::Particle::setType(), G4INCL::Random::shoot(), G4INCL::SigmaMinus, G4INCL::SigmaPlus, G4INCL::SigmaZero, G4INCL::Math::sign(), G4INCL::KinematicsUtils::totalEnergyInCM(), and anonymous_namespace{G4CascadeDeexciteBase.cc}::zero.

◆ getFinalState()

FinalState * G4INCL::IChannel::getFinalState ( )
inherited

Definition at line 50 of file G4INCLIChannel.cc.

50 {
51 FinalState *fs = new FinalState;
53 return fs;
54 }
virtual void fillFinalState(FinalState *fs)=0

References G4INCL::IChannel::fillFinalState().

◆ INCL_DECLARE_ALLOCATION_POOL()

G4INCL::NNToMissingStrangenessChannel::INCL_DECLARE_ALLOCATION_POOL ( NNToMissingStrangenessChannel  )
private

Field Documentation

◆ angularSlope

const G4double G4INCL::NNToMissingStrangenessChannel::angularSlope = 1.
staticprivate

Definition at line 57 of file G4INCLNNToMissingStrangenessChannel.hh.

Referenced by fillFinalState().

◆ particle1

Particle* G4INCL::NNToMissingStrangenessChannel::particle1
private

Definition at line 55 of file G4INCLNNToMissingStrangenessChannel.hh.

Referenced by fillFinalState().

◆ particle2

Particle * G4INCL::NNToMissingStrangenessChannel::particle2
private

Definition at line 55 of file G4INCLNNToMissingStrangenessChannel.hh.

Referenced by fillFinalState().


The documentation for this class was generated from the following files: