Geant4-11
Public Member Functions | Private Member Functions | Private Attributes
G4INCL::EtaNElasticChannel Class Reference

#include <G4INCLEtaNElasticChannel.hh>

Inheritance diagram for G4INCL::EtaNElasticChannel:
G4INCL::IChannel

Public Member Functions

 EtaNElasticChannel (Particle *, Particle *)
 
void fillFinalState (FinalState *fs)
 
FinalStategetFinalState ()
 
virtual ~EtaNElasticChannel ()
 

Private Member Functions

 INCL_DECLARE_ALLOCATION_POOL (EtaNElasticChannel)
 

Private Attributes

Particleparticle1
 
Particleparticle2
 

Detailed Description

Definition at line 47 of file G4INCLEtaNElasticChannel.hh.

Constructor & Destructor Documentation

◆ EtaNElasticChannel()

G4INCL::EtaNElasticChannel::EtaNElasticChannel ( Particle p1,
Particle p2 
)

Definition at line 47 of file G4INCLEtaNElasticChannel.cc.

◆ ~EtaNElasticChannel()

G4INCL::EtaNElasticChannel::~EtaNElasticChannel ( )
virtual

Definition at line 53 of file G4INCLEtaNElasticChannel.cc.

53 {
54
55 }

Member Function Documentation

◆ fillFinalState()

void G4INCL::EtaNElasticChannel::fillFinalState ( FinalState fs)
virtual

Implements G4INCL::IChannel.

Definition at line 57 of file G4INCLEtaNElasticChannel.cc.

57 {
58 Particle * nucleon;
59 Particle * eta;
60 if(particle1->isNucleon()) {
62 eta = particle2;
63 } else {
65 eta = particle1;
66 }
67
69
70 G4double sh=nucleon->getEnergy()+eta->getEnergy();
71 G4double mn=nucleon->getMass();
72 G4double me=eta->getMass();
73 G4double en=(sh*sh+mn*mn-me*me)/(2*sh);
74 nucleon->setEnergy(en);
75 G4double ee=std::sqrt(en*en-mn*mn+me*me);
76 eta->setEnergy(ee);
77 G4double pn=std::sqrt(en*en-mn*mn);
78
79 ThreeVector mom_nucleon;
80
81 if (plab < 250.) {
82// Isotropy
83 mom_nucleon = Random::normVector(pn);
84 }
85
86// From Kamano
87 else {
88
89 const G4double pi=std::acos(-1.0);
90 G4double x1;
91 G4double u1;
92 G4double fteta;
93 G4double teta;
94 G4double fi;
95
97 G4double a1;
98 G4double a2;
99 G4double a3;
100 G4double a4;
101 G4double a5;
102 G4double a6;
103
104 if (plab > 1400.) plab=1400.; // no information on angular distributions above plab=1400 MeV
105 G4double p6=std::pow(plab, 6);
106 G4double p5=std::pow(plab, 5);
107 G4double p4=std::pow(plab, 4);
108 G4double p3=std::pow(plab, 3);
109 G4double p2=std::pow(plab, 2);
110 G4double p1=plab;
111
112// a6
113 if (plab < 300.) {
114 a6=-8.384000E-08*p1 - 1.15452E-04;
115 }
116 else if (plab < 500.){
117 a6=1.593966E-13*p4 - 2.619560E-10*p3 + 1.564701E-07*p2 - 3.986627E-05*p1 + 3.622575E-03;
118 }
119 else {
120 a6=6.143615E-20*p6 - 3.157181E-16*p5 + 6.348289E-13*p4 - 6.117961E-10*p3 + 2.764542E-07*p2 - 4.391048E-05*p1 - 1.443857E-03;
121 }
122// a5
123 if (plab < 650.) {
124 a5=-9.021076E-18*p6 + 2.176771E-14*p5 - 2.136095E-11*p4 + 1.100580E-08*p3 - 3.150857E-06*p2 + 4.761016E-04*p1 - 2.969608E-02;
125 }
126 else if (plab < 950.){
127 a5=4.424756E-18*p6 - 1.756295E-14*p5 + 2.625428E-11*p4 - 1.678272E-08*p3 + 2.227237E-06*p2 + 2.146666E-03*p1 - 7.065712E-01;
128 }
129 else {
130 a5=2.209585E-19*p6 - 1.546647E-15*p5 + 4.578142E-12*p4 - 7.303856E-09*p3 + 6.604074E-06*p2 - 3.205628E-03*p1 + 6.534893E-01;
131 }
132// a4
133 if (plab < 700.) {
134 a4=4.826684E-17*p6 - 1.534471E-13*p5 + 1.907868E-10*p4 - 1.192317E-07*p3 + 3.988902E-05*p2 - 6.822100E-03*p1 + 4.684685E-01;
135 }
136 else {
137 a4=-3.245143E-18*p6 + 2.174395E-14*p5 - 6.012288E-11*p4 + 8.772790E-08*p3 - 7.113554E-05*p2 + 3.029285E-02*p1 - 5.237677E+00;
138 }
139// a3
140 if (plab < 650.) {
141 a3=3.783071E-17*p6 - 1.151454E-13*p5 + 1.357165E-10*p4 - 8.036891E-08*p3 + 2.572396E-05*p2 - 4.245566E-03*p1 + 2.832772E-01;
142 }
143 else {
144 a3=-5.063316E-18*p6 + 3.223757E-14*p5 - 8.435635E-11*p4 + 1.159487E-07*p3 - 8.812510E-05*p2 + 3.500692E-02*p1 - 5.624556E+00;
145 }
146// a2
147 if (plab < 500.) {
148 a2=-6.085067E-14*p5 + 1.354078E-10*p4 - 1.124158E-07*p3 + 4.292106E-05*p2 - 7.218145E-03*p1 + 4.584962E-01;
149 }
150 else if (plab < 750.) {
151 a2= 9.512730E-11*p4 - 2.362724E-07*p3 + 2.171883E-04*p2 - 8.742722E-02*p1 + 1.309433E+01;
152 }
153 else {
154 a2=-4.228889E-18*p6 + 2.798222E-14*p5 - 7.640831E-11*p4 + 1.100124E-07*p3 - 8.778573E-05*p2 + 3.652772E-02*p1 - 6.025497E+00;
155 }
156// a1
157 if (plab < 500.) {
158 a1=-1.524408E-14*p5 + 3.007021E-11*p4 - 2.129570E-08*p3 + 5.607250E-06*p2 - 3.001598E-04*p1 + 8.701280E-04;
159 }
160 else if (plab < 750.) {
161 a1=-3.255396E-11*p4 + 8.168681E-08*p3 - 7.447474E-05*p2 + 2.917630E-02*p1 - 4.152037E+00;
162 }
163 else {
164 a1=9.964504E-19*p6 - 6.380168E-15*p5 + 1.638691E-11*p4 - 2.107063E-08*p3 + 1.347462E-05*p2 - 3.318304E-03*p1 - 5.030932E-02;
165 }
166// a0
167 a0=-3.220143E-17*p6 + 1.789654E-13*p5 - 3.912863E-10*p4 + 4.181510E-07*p3 - 2.147259E-04*p2 + 3.856266E-02*p1 + 2.609971E+00;
168
169 G4double interg1=2.*(a6/7. + a4/5. + a2/3. + a0); // (integral to normalize)
170 G4double f1=(a6+a5+a4+a3+a2+a1+a0)/interg1; // (Max normalized)
171
172 G4int passe1=0;
173 while (passe1==0) {
174 // Sample x from -1 to 1
175 x1=Random::shoot();
176 if (Random::shoot() > 0.5) x1=-x1;
177
178 // Sample u from 0 to 1
179 u1=Random::shoot();
180 fteta=(a6*x1*x1*x1*x1*x1*x1+a5*x1*x1*x1*x1*x1+a4*x1*x1*x1*x1+a3*x1*x1*x1+a2*x1*x1+a1*x1+a0)/interg1;
181 // The condition
182 if (u1*f1 < fteta) {
183 teta=std::acos(x1);
184 // std::cout << x1 << " " << fteta << " "<< f1/interg1 << " " << u1 << " " << interg1 << std::endl;
185 passe1=1;
186 }
187 }
188
189 fi=(2.0*pi)*Random::shoot();
190
191 ThreeVector mom_nucleon1(
192 pn*std::sin(teta)*std::cos(fi),
193 pn*std::sin(teta)*std::sin(fi),
194 pn*std::cos(teta)
195 );
196
197 mom_nucleon = -mom_nucleon1 ;
198
199 }
200
201 nucleon->setMomentum(mom_nucleon);
202 eta->setMomentum(-mom_nucleon);
203
204 fs->addModifiedParticle(nucleon);
205 fs->addModifiedParticle(eta);
206
207 }
const G4double a0
static constexpr double pi
Definition: G4SIunits.hh:55
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
G4bool isNucleon() const
G4double momentumInLab(Particle const *const p1, Particle const *const p2)
gives the momentum in the lab frame of two particles.
ThreeVector normVector(G4double norm=1.)
G4double shoot()
Definition: G4INCLRandom.cc:93
G4bool nucleon(G4int ityp)

References a0, G4INCL::FinalState::addModifiedParticle(), G4INCL::Particle::getEnergy(), G4INCL::Particle::getMass(), G4INCL::Particle::isNucleon(), G4INCL::KinematicsUtils::momentumInLab(), G4INCL::Random::normVector(), G4InuclParticleNames::nucleon(), particle1, particle2, pi, G4InuclParticleNames::pn, G4INCL::Particle::setEnergy(), G4INCL::Particle::setMomentum(), and G4INCL::Random::shoot().

◆ getFinalState()

FinalState * G4INCL::IChannel::getFinalState ( )
inherited

Definition at line 50 of file G4INCLIChannel.cc.

50 {
51 FinalState *fs = new FinalState;
53 return fs;
54 }
virtual void fillFinalState(FinalState *fs)=0

References G4INCL::IChannel::fillFinalState().

◆ INCL_DECLARE_ALLOCATION_POOL()

G4INCL::EtaNElasticChannel::INCL_DECLARE_ALLOCATION_POOL ( EtaNElasticChannel  )
private

Field Documentation

◆ particle1

Particle* G4INCL::EtaNElasticChannel::particle1
private

Definition at line 55 of file G4INCLEtaNElasticChannel.hh.

Referenced by fillFinalState().

◆ particle2

Particle * G4INCL::EtaNElasticChannel::particle2
private

Definition at line 55 of file G4INCLEtaNElasticChannel.hh.

Referenced by fillFinalState().


The documentation for this class was generated from the following files: