Geant4-11
Public Member Functions
G4INCL::CoulombNone Class Reference

#include <G4INCLCoulombNone.hh>

Inheritance diagram for G4INCL::CoulombNone:
G4INCL::ICoulomb

Public Member Functions

IAvatarList bringToSurface (Cluster *const c, Nucleus *const n) const
 Position the cluster on the surface of the nucleus. More...
 
ParticleEntryAvatarbringToSurface (Particle *const p, Nucleus *const n) const
 Position the particle on the surface of the nucleus. More...
 
 CoulombNone ()
 
void distortOut (ParticleList const &, Nucleus const *const) const
 Modify the momenta of the outgoing particles. More...
 
G4double maxImpactParameter (ParticleSpecies const &p, const G4double, Nucleus const *const n) const
 Return the maximum impact parameter for Coulomb-distorted trajectories. More...
 
virtual ~CoulombNone ()
 

Detailed Description

Definition at line 55 of file G4INCLCoulombNone.hh.

Constructor & Destructor Documentation

◆ CoulombNone()

G4INCL::CoulombNone::CoulombNone ( )
inline

Definition at line 58 of file G4INCLCoulombNone.hh.

58{}

◆ ~CoulombNone()

virtual G4INCL::CoulombNone::~CoulombNone ( )
inlinevirtual

Definition at line 59 of file G4INCLCoulombNone.hh.

59{}

Member Function Documentation

◆ bringToSurface() [1/2]

IAvatarList G4INCL::CoulombNone::bringToSurface ( Cluster *const  c,
Nucleus *const  n 
) const
virtual

Position the cluster on the surface of the nucleus.

This method does not perform any distortion.

Parameters
cincoming cluster
ndistorting nucleus

Implements G4INCL::ICoulomb.

Definition at line 59 of file G4INCLCoulombNone.cc.

59 {
60 // The avatar list that we will return
61 IAvatarList theAvatarList;
62
63 // Loop over the particles in the cluster
64 ParticleList const &projectiles = c->getParticles();
65 std::list<Intersection> theIntersections;
66 G4double theFirstEntryTime = 1E+60; // a large time
67 G4int theFirstID = 0;
68 for(ParticleIter p=projectiles.begin(), e=projectiles.end(); p!=e; ++p) {
69 // Check if the particle enters the nucleus
71 (*p)->getPosition(),
72 (*p)->getPropagationVelocity(),
73 n->getUniverseRadius()));
74 // Store the intersections
75 theIntersections.push_back(intersection);
76 if(intersection.exists) {
77 // Position the particle at the entry point
78 (*p)->setPosition(intersection.position);
79
80 // Keep track of the first entering particle
81 if(intersection.time < theFirstEntryTime) {
82 theFirstEntryTime = intersection.time;
83 theFirstID = (*p)->getID();
84 }
85 }
86 }
87
88 std::list<Intersection>::const_iterator intIter = theIntersections.begin();
89 for(ParticleIter p=projectiles.begin(), e=projectiles.end(); p!=e; ++p, ++intIter) {
90
91 if((*intIter).exists) {
92 // If the particle enters the nucleus, generate a ParticleEntryAvatar
93 // for it and add it to the list of avatars that we will return
94 if((*p)->getID() == theFirstID) {
95 // The first particle always enters exactly at t=0 (in order to
96 // avoid negative entry times due to rounding)
97 theAvatarList.push_back(new ParticleEntryAvatar(0.0, n, *p));
98 } else
99 theAvatarList.push_back(new ParticleEntryAvatar(intIter->time - theFirstEntryTime, n, *p));
100 }
101
102 }
103
104 return theAvatarList;
105 }
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
Intersection getEarlierTrajectoryIntersection(const ThreeVector &x0, const ThreeVector &p, const G4double r)
Compute the first intersection of a straight particle trajectory with a sphere.
ParticleList::const_iterator ParticleIter
UnorderedVector< IAvatar * > IAvatarList

References G4INCL::Intersection::exists, G4INCL::IntersectionFactory::getEarlierTrajectoryIntersection(), G4INCL::Cluster::getParticles(), CLHEP::detail::n, G4INCL::Intersection::position, and G4INCL::Intersection::time.

◆ bringToSurface() [2/2]

ParticleEntryAvatar * G4INCL::CoulombNone::bringToSurface ( Particle *const  p,
Nucleus *const  n 
) const
virtual

Position the particle on the surface of the nucleus.

This method does not perform any distortion.

Parameters
pincoming particle
ndistorting nucleus

Implements G4INCL::ICoulomb.

Definition at line 50 of file G4INCLCoulombNone.cc.

50 {
51 Intersection intersection = IntersectionFactory::getEarlierTrajectoryIntersection(p->getPosition(), p->getPropagationVelocity(), n->getUniverseRadius());
52 if(intersection.exists) { // If the particle enters the nucleus
53 p->setPosition(intersection.position);
54 return new ParticleEntryAvatar(0.0, n, p);
55 } else // If the particle does NOT enter the nucleus
56 return NULL;
57 }

References G4INCL::Intersection::exists, G4INCL::IntersectionFactory::getEarlierTrajectoryIntersection(), G4INCL::Particle::getPosition(), G4INCL::Particle::getPropagationVelocity(), CLHEP::detail::n, G4INCL::Intersection::position, and G4INCL::Particle::setPosition().

Referenced by G4INCL::CoulombNonRelativistic::bringToSurface().

◆ distortOut()

void G4INCL::CoulombNone::distortOut ( ParticleList const &  ,
Nucleus const * const   
) const
inlinevirtual

Modify the momenta of the outgoing particles.

This method does not perform any distortion.

Implements G4INCL::ICoulomb.

Definition at line 83 of file G4INCLCoulombNone.hh.

83{}

◆ maxImpactParameter()

G4double G4INCL::CoulombNone::maxImpactParameter ( ParticleSpecies const &  p,
const  G4double,
Nucleus const *const  n 
) const
inlinevirtual

Return the maximum impact parameter for Coulomb-distorted trajectories.

Implements G4INCL::ICoulomb.

Definition at line 87 of file G4INCLCoulombNone.hh.

88 {
89 if(p.theType == Composite)
90 return 2.*ParticleTable::getLargestNuclearRadius(p.theA, p.theZ)
91 + n->getUniverseRadius();
92 else
93 return n->getUniverseRadius();
94 }
G4double getLargestNuclearRadius(const G4int A, const G4int Z)

References G4INCL::Composite, G4INCL::ParticleTable::getLargestNuclearRadius(), CLHEP::detail::n, G4INCL::ParticleSpecies::theA, G4INCL::ParticleSpecies::theType, and G4INCL::ParticleSpecies::theZ.


The documentation for this class was generated from the following files: