Geant4-11
G4INCLPiNToEtaChannel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// INCL++ intra-nuclear cascade model
27// Alain Boudard, CEA-Saclay, France
28// Joseph Cugnon, University of Liege, Belgium
29// Jean-Christophe David, CEA-Saclay, France
30// Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31// Sylvie Leray, CEA-Saclay, France
32// Davide Mancusi, CEA-Saclay, France
33//
34#define INCLXX_IN_GEANT4_MODE 1
35
36#include "globals.hh"
37
41#include "G4INCLRandom.hh"
42#include "G4INCLGlobals.hh"
43#include "G4INCLLogger.hh"
44
45namespace G4INCL {
46
48 : particle1(p1), particle2(p2)
49 {
50
51 }
52
54
55 }
56
59 Particle * pion;
60 if(particle1->isNucleon()) {
63 } else {
66 }
67
68
70// assert(iso == 1 || iso == -1);
71 if (iso == 1) {
72 nucleon->setType(Proton);
73 }
74 else if (iso == -1) {
75 nucleon->setType(Neutron);
76 }
77 pion->setType(Eta);
78 G4double sh=nucleon->getEnergy()+pion->getEnergy();
79 G4double mn=nucleon->getMass();
80 G4double me=pion->getMass();
81 G4double en=(sh*sh+mn*mn-me*me)/(2*sh);
82 nucleon->setEnergy(en);
83 G4double ee=std::sqrt(en*en-mn*mn+me*me);
84 pion->setEnergy(ee);
85 G4double pn=std::sqrt(en*en-mn*mn);
86
87// real distribution (from PRC 78, 025204 (2008))
88
89
91
92 const G4double pi=std::acos(-1.0);
93 G4double x1;
94 G4double u1;
95 G4double fteta;
96 G4double teta;
97 G4double fi;
98
99 if (ECM < 1650.) {
100// below 1650 MeV - angular distribution (x=cos(theta): ax^2+bx+c
101
102 G4double f1= -0.0000288627*ECM*ECM+0.09155289*ECM-72.25436; // f(1) that is the maximum (fit on experimental data)
103 G4double b1=(f1-(f1/(1.5-0.5*std::pow((ECM-1580.)/95.,2))))/2.; // ideas: 1) f(-1)=0.5f(1); 2) "power term" flattens the distribution away from ECM=1580 MeV
104 G4double a1=2.5*b1; // minimum at cos(theta) = -0.2
105 G4double c1=f1-3.5*b1;
106
107 G4double interg1=2.*a1/3. +2.*c1; // (integral to normalize)
108
109 G4int passe1=0;
110 while (passe1==0) {
111 // Sample x from -1 to 1
112 x1=Random::shoot();
113 if (Random::shoot() > 0.5) x1=-x1;
114
115 // Sample u from 0 to 1
116 u1=Random::shoot();
117 fteta=(a1*x1*x1+b1*x1+c1)/interg1;
118 // The condition
119 if (u1*f1/interg1 < fteta) {
120 teta=std::acos(x1);
121 passe1=1;
122 }
123 }
124 }
125 else {
126// above 1650 MeV - angular distribution (x=cos(theta): (ax^2+bx+c)*(0.5+(arctan(10*(x+dev)))/pi) + vert
127
128 G4double a2=-0.29;
129 G4double b2=0.348; // ax^2+bx+c: around cos(theta)=0.6 with maximum at 0.644963 (value = 0.1872666)
130 G4double c2=0.0546;
131 G4double dev=-0.2; // tail close to zero from "dev" down to -1
132 G4double vert=0.04; // to avoid negative differential cross sections
133
134 G4double interg2=0.1716182902205207; // with the above given parameters! (integral to normalize)
135 const G4double f2=1.09118088; // maximum (integral taken into account)
136
137 G4int passe2=0;
138 while (passe2==0) {
139 // Sample x from -1 to 1
140 x1=Random::shoot();
141 if (Random::shoot() > 0.5) x1=-x1;
142
143 // Sample u from 0 to 1
144 u1=Random::shoot();
145 fteta=((a2*x1*x1+b2*x1+c2)*(0.5+(std::atan(10*(x1+dev)))/pi) + vert)/interg2;
146 // The condition
147 if (u1*f2 < fteta) {
148 teta=std::acos(x1);
149 passe2=1;
150 }
151 }
152 }
153
154 fi=(2.0*pi)*Random::shoot();
155
156 ThreeVector mom_nucleon(
157 pn*std::sin(teta)*std::cos(fi),
158 pn*std::sin(teta)*std::sin(fi),
159 pn*std::cos(teta)
160 );
161// end real distribution
162
163 nucleon->setMomentum(-mom_nucleon);
164 pion->setMomentum(mom_nucleon);
165
168 }
169
170}
static constexpr double pi
Definition: G4SIunits.hh:55
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
void addModifiedParticle(Particle *p)
G4bool isNucleon() const
PiNToEtaChannel(Particle *, Particle *)
void fillFinalState(FinalState *fs)
G4double totalEnergyInCM(Particle const *const p1, Particle const *const p2)
G4int getIsospin(const ParticleType t)
Get the isospin of a particle.
G4double shoot()
Definition: G4INCLRandom.cc:93
G4bool pion(G4int ityp)
G4bool nucleon(G4int ityp)