Geant4.10
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Public Member Functions
G4EmStandardPhysics_option4 Class Reference

#include <G4EmStandardPhysics_option4.hh>

Inheritance diagram for G4EmStandardPhysics_option4:
G4VPhysicsConstructor

Public Member Functions

 G4EmStandardPhysics_option4 (G4int ver=1)
 
 G4EmStandardPhysics_option4 (G4int ver, const G4String &name)
 
virtual ~G4EmStandardPhysics_option4 ()
 
virtual void ConstructParticle ()
 
virtual void ConstructProcess ()
 
- Public Member Functions inherited from G4VPhysicsConstructor
 G4VPhysicsConstructor (const G4String &="")
 
 G4VPhysicsConstructor (const G4String &name, G4int physics_type)
 
virtual ~G4VPhysicsConstructor ()
 
void SetPhysicsName (const G4String &="")
 
const G4StringGetPhysicsName () const
 
void SetPhysicsType (G4int)
 
G4int GetPhysicsType () const
 
void SetVerboseLevel (G4int value)
 
G4int GetVerboseLevel () const
 
G4int GetInstanceID () const
 

Additional Inherited Members

- Static Public Member Functions inherited from G4VPhysicsConstructor
static const G4VPCManagerGetSubInstanceManager ()
 
- Protected Member Functions inherited from G4VPhysicsConstructor
G4bool RegisterProcess (G4VProcess *process, G4ParticleDefinition *particle)
 
- Protected Attributes inherited from G4VPhysicsConstructor
G4int verboseLevel
 
G4String namePhysics
 
G4int typePhysics
 
G4ParticleTabletheParticleTable
 
G4int g4vpcInstanceID
 
- Static Protected Attributes inherited from G4VPhysicsConstructor
static G4RUN_DLL G4VPCManager subInstanceManager
 

Detailed Description

Definition at line 53 of file G4EmStandardPhysics_option4.hh.

Constructor & Destructor Documentation

G4EmStandardPhysics_option4::G4EmStandardPhysics_option4 ( G4int  ver = 1)

Definition at line 120 of file G4EmStandardPhysics_option4.cc.

References bElectromagnetic, G4LossTableManager::Instance(), and G4VPhysicsConstructor::SetPhysicsType().

121  : G4VPhysicsConstructor("G4EmStandard_opt4"), verbose(ver)
122 {
125 }
static G4LossTableManager * Instance()
G4VPhysicsConstructor(const G4String &="")
G4EmStandardPhysics_option4::G4EmStandardPhysics_option4 ( G4int  ver,
const G4String name 
)

Definition at line 129 of file G4EmStandardPhysics_option4.cc.

References bElectromagnetic, G4LossTableManager::Instance(), and G4VPhysicsConstructor::SetPhysicsType().

130  : G4VPhysicsConstructor("G4EmStandard_opt3"), verbose(ver)
131 {
134 }
static G4LossTableManager * Instance()
G4VPhysicsConstructor(const G4String &="")
G4EmStandardPhysics_option4::~G4EmStandardPhysics_option4 ( )
virtual

Definition at line 138 of file G4EmStandardPhysics_option4.cc.

139 {}

Member Function Documentation

void G4EmStandardPhysics_option4::ConstructParticle ( void  )
virtual

Implements G4VPhysicsConstructor.

Definition at line 143 of file G4EmStandardPhysics_option4.cc.

References G4Alpha::Alpha(), G4AntiProton::AntiProton(), G4Deuteron::Deuteron(), G4Electron::Electron(), G4Gamma::Gamma(), G4GenericIon::GenericIonDefinition(), G4He3::He3(), G4KaonMinus::KaonMinusDefinition(), G4KaonPlus::KaonPlusDefinition(), G4MuonMinus::MuonMinus(), G4MuonPlus::MuonPlus(), G4PionMinus::PionMinusDefinition(), G4PionPlus::PionPlusDefinition(), G4Positron::Positron(), G4Proton::Proton(), and G4Triton::Triton().

144 {
145 // gamma
146  G4Gamma::Gamma();
147 
148 // leptons
153 
154 // mesons
159 
160 // barions
163 
164 // ions
167  G4He3::He3();
168  G4Alpha::Alpha();
170 }
static G4KaonPlus * KaonPlusDefinition()
Definition: G4KaonPlus.cc:108
static G4GenericIon * GenericIonDefinition()
Definition: G4GenericIon.cc:88
static G4MuonPlus * MuonPlus()
Definition: G4MuonPlus.cc:99
static G4KaonMinus * KaonMinusDefinition()
Definition: G4KaonMinus.cc:108
static G4AntiProton * AntiProton()
Definition: G4AntiProton.cc:93
static G4PionMinus * PionMinusDefinition()
Definition: G4PionMinus.cc:93
static G4Triton * Triton()
Definition: G4Triton.cc:95
static G4PionPlus * PionPlusDefinition()
Definition: G4PionPlus.cc:93
static G4Proton * Proton()
Definition: G4Proton.cc:93
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
static G4Deuteron * Deuteron()
Definition: G4Deuteron.cc:94
static G4Positron * Positron()
Definition: G4Positron.cc:94
static G4MuonMinus * MuonMinus()
Definition: G4MuonMinus.cc:100
static G4Electron * Electron()
Definition: G4Electron.cc:94
static G4Alpha * Alpha()
Definition: G4Alpha.cc:89
static G4He3 * He3()
Definition: G4He3.cc:94
void G4EmStandardPhysics_option4::ConstructProcess ( void  )
virtual

Implements G4VPhysicsConstructor.

Definition at line 174 of file G4EmStandardPhysics_option4.cc.

References G4VMultipleScattering::AddEmModel(), G4VEmProcess::AddEmModel(), G4VEnergyLossProcess::AddEmModel(), aParticleIterator, python.hepunit::eV, fUseDistanceToBoundary, G4cout, G4endl, G4ParticleDefinition::GetParticleName(), G4PhysicsListHelper::GetPhysicsListHelper(), G4VPhysicsConstructor::GetPhysicsName(), python.hepunit::GeV, G4LossTableManager::Instance(), python.hepunit::MeV, G4InuclParticleNames::mup, G4InuclParticleNames::pip, G4InuclParticleNames::pp, G4PhysicsListHelper::RegisterProcess(), G4VEmModel::SetActivationLowEnergyLimit(), G4LossTableManager::SetAtomDeexcitation(), G4EmProcessOptions::SetDEDXBinning(), G4VEmProcess::SetEmModel(), G4VEnergyLossProcess::SetEmModel(), G4VAtomDeexcitation::SetFluo(), G4VEmModel::SetHighEnergyLimit(), G4EmProcessOptions::SetLambdaBinning(), G4VEmModel::SetLowEnergyLimit(), G4EmProcessOptions::SetMaxEnergy(), G4VEmProcess::SetMaxKinEnergy(), G4EmProcessOptions::SetMinEnergy(), G4VEmProcess::SetMinKinEnergy(), G4EmProcessOptions::SetPolarAngleLimit(), G4VMultipleScattering::SetRangeFactor(), G4VEnergyLossProcess::SetStepFunction(), G4VMultipleScattering::SetStepLimitType(), G4EmProcessOptions::SetVerbose(), and python.hepunit::TeV.

175 {
176  if(verbose > 1) {
177  G4cout << "### " << GetPhysicsName() << " Construct Processes " << G4endl;
178  }
180 
181  // muon & hadron bremsstrahlung and pair production
190 
191  // muon & hadron multiple scattering
193  mumsc->AddEmModel(0, new G4WentzelVIModel());
195  //pimsc->AddEmModel(0, new G4WentzelVIModel());
197  //kmsc->AddEmModel(0, new G4WentzelVIModel());
199  //pmsc->AddEmModel(0, new G4WentzelVIModel());
200  G4hMultipleScattering* hmsc = new G4hMultipleScattering("ionmsc");
201 
202  // high energy limit for e+- scattering models
203  G4double highEnergyLimit = 100*MeV;
204 
205  // nuclear stopping
206  G4NuclearStopping* ionnuc = new G4NuclearStopping();
207  G4NuclearStopping* pnuc = new G4NuclearStopping();
208 
209  // Add standard EM Processes
210  aParticleIterator->reset();
211  while( (*aParticleIterator)() ){
212  G4ParticleDefinition* particle = aParticleIterator->value();
213  G4String particleName = particle->GetParticleName();
214 
215  if (particleName == "gamma") {
216 
217  // Compton scattering
219  cs->SetEmModel(new G4KleinNishinaModel(),1);
220  G4VEmModel* theLowEPComptonModel = new G4LowEPComptonModel();
221  theLowEPComptonModel->SetHighEnergyLimit(20*MeV);
222  cs->AddEmModel(0, theLowEPComptonModel);
223  ph->RegisterProcess(cs, particle);
224 
225  // Photoelectric
227  G4VEmModel* theLivermorePEModel = new G4LivermorePhotoElectricModel();
228  theLivermorePEModel->SetHighEnergyLimit(10*GeV);
229  pe->SetEmModel(theLivermorePEModel,1);
230  ph->RegisterProcess(pe, particle);
231 
232  // Gamma conversion
234  G4VEmModel* thePenelopeGCModel = new G4PenelopeGammaConversionModel();
235  thePenelopeGCModel->SetHighEnergyLimit(1*GeV);
236  gc->SetEmModel(thePenelopeGCModel,1);
237  ph->RegisterProcess(gc, particle);
238 
239  // Rayleigh scattering
240  ph->RegisterProcess(new G4RayleighScattering(), particle);
241 
242  } else if (particleName == "e-") {
243 
244  // multiple scattering
247  G4UrbanMscModel* msc1 = new G4UrbanMscModel();
248  G4WentzelVIModel* msc2 = new G4WentzelVIModel();
249  msc1->SetHighEnergyLimit(highEnergyLimit);
250  msc2->SetLowEnergyLimit(highEnergyLimit);
251  msc->SetRangeFactor(0.01);
252  msc->AddEmModel(0, msc1);
253  msc->AddEmModel(0, msc2);
254 
257  ss->SetEmModel(ssm, 1);
258  ss->SetMinKinEnergy(highEnergyLimit);
259  ssm->SetLowEnergyLimit(highEnergyLimit);
260  ssm->SetActivationLowEnergyLimit(highEnergyLimit);
261 
262  // ionisation
263  G4eIonisation* eIoni = new G4eIonisation();
264  eIoni->SetStepFunction(0.2, 100*um);
265  G4VEmModel* theIoniPenelope = new G4PenelopeIonisationModel();
266  theIoniPenelope->SetHighEnergyLimit(0.1*MeV);
267  eIoni->AddEmModel(0, theIoniPenelope, new G4UniversalFluctuation());
268 
269  // bremsstrahlung
270  G4eBremsstrahlung* eBrem = new G4eBremsstrahlung();
271 
272  // register processes
273  ph->RegisterProcess(msc, particle);
274  ph->RegisterProcess(eIoni, particle);
275  ph->RegisterProcess(eBrem, particle);
276  ph->RegisterProcess(ss, particle);
277 
278  } else if (particleName == "e+") {
279 
280  // multiple scattering
283  G4UrbanMscModel* msc1 = new G4UrbanMscModel();
284  G4WentzelVIModel* msc2 = new G4WentzelVIModel();
285  msc1->SetHighEnergyLimit(highEnergyLimit);
286  msc2->SetLowEnergyLimit(highEnergyLimit);
287  msc->SetRangeFactor(0.01);
288  msc->AddEmModel(0, msc1);
289  msc->AddEmModel(0, msc2);
290 
293  ss->SetEmModel(ssm, 1);
294  ss->SetMinKinEnergy(highEnergyLimit);
295  ssm->SetLowEnergyLimit(highEnergyLimit);
296  ssm->SetActivationLowEnergyLimit(highEnergyLimit);
297 
298  // ionisation
299  G4eIonisation* eIoni = new G4eIonisation();
300  eIoni->SetStepFunction(0.2, 100*um);
301  G4VEmModel* theIoniPenelope = new G4PenelopeIonisationModel();
302  theIoniPenelope->SetHighEnergyLimit(0.1*MeV);
303  eIoni->AddEmModel(0, theIoniPenelope, new G4UniversalFluctuation());
304 
305  // bremsstrahlung
306  G4eBremsstrahlung* eBrem = new G4eBremsstrahlung();
307 
308  // register processes
309  ph->RegisterProcess(msc, particle);
310  ph->RegisterProcess(eIoni, particle);
311  ph->RegisterProcess(eBrem, particle);
312  ph->RegisterProcess(new G4eplusAnnihilation(), particle);
313  ph->RegisterProcess(ss, particle);
314 
315  } else if (particleName == "mu+" ||
316  particleName == "mu-" ) {
317 
318  G4MuIonisation* muIoni = new G4MuIonisation();
319  muIoni->SetStepFunction(0.2, 50*um);
320 
321  ph->RegisterProcess(mumsc, particle);
322  ph->RegisterProcess(muIoni, particle);
323  ph->RegisterProcess(mub, particle);
324  ph->RegisterProcess(mup, particle);
325  ph->RegisterProcess(new G4CoulombScattering(), particle);
326 
327  } else if (particleName == "alpha" ||
328  particleName == "He3") {
329 
331  G4ionIonisation* ionIoni = new G4ionIonisation();
332  ionIoni->SetStepFunction(0.1, 10*um);
333 
334  ph->RegisterProcess(msc, particle);
335  ph->RegisterProcess(ionIoni, particle);
336  ph->RegisterProcess(ionnuc, particle);
337 
338  } else if (particleName == "GenericIon") {
339 
340  G4ionIonisation* ionIoni = new G4ionIonisation();
341  ionIoni->SetEmModel(new G4IonParametrisedLossModel());
342  ionIoni->SetStepFunction(0.1, 1*um);
343 
344  ph->RegisterProcess(hmsc, particle);
345  ph->RegisterProcess(ionIoni, particle);
346  ph->RegisterProcess(ionnuc, particle);
347 
348  } else if (particleName == "pi+" ||
349  particleName == "pi-" ) {
350 
351  //G4hMultipleScattering* pimsc = new G4hMultipleScattering();
352  G4hIonisation* hIoni = new G4hIonisation();
353  hIoni->SetStepFunction(0.2, 50*um);
354 
355  ph->RegisterProcess(pimsc, particle);
356  ph->RegisterProcess(hIoni, particle);
357  ph->RegisterProcess(pib, particle);
358  ph->RegisterProcess(pip, particle);
359 
360  } else if (particleName == "kaon+" ||
361  particleName == "kaon-" ) {
362 
363  //G4hMultipleScattering* kmsc = new G4hMultipleScattering();
364  G4hIonisation* hIoni = new G4hIonisation();
365  hIoni->SetStepFunction(0.2, 50*um);
366 
367  ph->RegisterProcess(kmsc, particle);
368  ph->RegisterProcess(hIoni, particle);
369  ph->RegisterProcess(kb, particle);
370  ph->RegisterProcess(kp, particle);
371 
372  } else if (particleName == "proton" ||
373  particleName == "anti_proton") {
374 
375  //G4hMultipleScattering* pmsc = new G4hMultipleScattering();
376  G4hIonisation* hIoni = new G4hIonisation();
377  hIoni->SetStepFunction(0.2, 50*um);
378 
379  ph->RegisterProcess(pmsc, particle);
380  ph->RegisterProcess(hIoni, particle);
381  ph->RegisterProcess(pb, particle);
382  ph->RegisterProcess(pp, particle);
383  ph->RegisterProcess(pnuc, particle);
384 
385  } else if (particleName == "B+" ||
386  particleName == "B-" ||
387  particleName == "D+" ||
388  particleName == "D-" ||
389  particleName == "Ds+" ||
390  particleName == "Ds-" ||
391  particleName == "anti_He3" ||
392  particleName == "anti_alpha" ||
393  particleName == "anti_deuteron" ||
394  particleName == "anti_lambda_c+" ||
395  particleName == "anti_omega-" ||
396  particleName == "anti_sigma_c+" ||
397  particleName == "anti_sigma_c++" ||
398  particleName == "anti_sigma+" ||
399  particleName == "anti_sigma-" ||
400  particleName == "anti_triton" ||
401  particleName == "anti_xi_c+" ||
402  particleName == "anti_xi-" ||
403  particleName == "deuteron" ||
404  particleName == "lambda_c+" ||
405  particleName == "omega-" ||
406  particleName == "sigma_c+" ||
407  particleName == "sigma_c++" ||
408  particleName == "sigma+" ||
409  particleName == "sigma-" ||
410  particleName == "tau+" ||
411  particleName == "tau-" ||
412  particleName == "triton" ||
413  particleName == "xi_c+" ||
414  particleName == "xi-" ) {
415 
416  ph->RegisterProcess(hmsc, particle);
417  ph->RegisterProcess(new G4hIonisation(), particle);
418  ph->RegisterProcess(pnuc, particle);
419  }
420  }
421 
422  // Em options
423  //
424  G4EmProcessOptions opt;
425  opt.SetVerbose(verbose);
426 
427  // Multiple Coulomb scattering
428  //
429  opt.SetPolarAngleLimit(CLHEP::pi);
430 
431  // Physics tables
432  //
433  opt.SetMinEnergy(100*eV);
434  opt.SetMaxEnergy(10*TeV);
435  opt.SetDEDXBinning(220);
436  opt.SetLambdaBinning(220);
437 
438  // Nuclear stopping
439  pnuc->SetMaxKinEnergy(MeV);
440 
441  // Ionization
442  //
443  //opt.SetSubCutoff(true);
444 
445  // Deexcitation
448  de->SetFluo(true);
449 }
static G4LossTableManager * Instance()
void SetMinEnergy(G4double val)
void SetStepFunction(G4double v1, G4double v2)
const G4String & GetParticleName() const
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:683
void SetDEDXBinning(G4int val)
void SetEmModel(G4VEmModel *, G4int index=1)
G4GLOB_DLL std::ostream G4cout
void SetLambdaBinning(G4int val)
#define aParticleIterator
G4bool RegisterProcess(G4VProcess *process, G4ParticleDefinition *particle)
void AddEmModel(G4int, G4VEmModel *, G4VEmFluctuationModel *fluc=0, const G4Region *region=0)
const G4String & GetPhysicsName() const
void SetMaxEnergy(G4double val)
void SetActivationLowEnergyLimit(G4double)
Definition: G4VEmModel.hh:704
void SetMaxKinEnergy(G4double e)
void AddEmModel(G4int, G4VEmModel *, const G4Region *region=0)
void AddEmModel(G4int order, G4VEmModel *, const G4Region *region=0)
static G4PhysicsListHelper * GetPhysicsListHelper()
void SetEmModel(G4VEmModel *, G4int index=1)
#define G4endl
Definition: G4ios.hh:61
void SetMinKinEnergy(G4double e)
double G4double
Definition: G4Types.hh:76
void SetLowEnergyLimit(G4double)
Definition: G4VEmModel.hh:690
void SetRangeFactor(G4double val)
void SetAtomDeexcitation(G4VAtomDeexcitation *)
void SetStepLimitType(G4MscStepLimitType val)
void SetVerbose(G4int val, const G4String &name="all", G4bool worker=false)
void SetPolarAngleLimit(G4double val)

The documentation for this class was generated from the following files: