Geant4.10
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Public Member Functions
G4EmLivermorePhysics Class Reference

#include <G4EmLivermorePhysics.hh>

Inheritance diagram for G4EmLivermorePhysics:
G4VPhysicsConstructor

Public Member Functions

 G4EmLivermorePhysics (G4int ver=1)
 
 G4EmLivermorePhysics (G4int ver, const G4String &name)
 
virtual ~G4EmLivermorePhysics ()
 
virtual void ConstructParticle ()
 
virtual void ConstructProcess ()
 
- Public Member Functions inherited from G4VPhysicsConstructor
 G4VPhysicsConstructor (const G4String &="")
 
 G4VPhysicsConstructor (const G4String &name, G4int physics_type)
 
virtual ~G4VPhysicsConstructor ()
 
void SetPhysicsName (const G4String &="")
 
const G4StringGetPhysicsName () const
 
void SetPhysicsType (G4int)
 
G4int GetPhysicsType () const
 
void SetVerboseLevel (G4int value)
 
G4int GetVerboseLevel () const
 
G4int GetInstanceID () const
 

Additional Inherited Members

- Static Public Member Functions inherited from G4VPhysicsConstructor
static const G4VPCManagerGetSubInstanceManager ()
 
- Protected Member Functions inherited from G4VPhysicsConstructor
G4bool RegisterProcess (G4VProcess *process, G4ParticleDefinition *particle)
 
- Protected Attributes inherited from G4VPhysicsConstructor
G4int verboseLevel
 
G4String namePhysics
 
G4int typePhysics
 
G4ParticleTabletheParticleTable
 
G4int g4vpcInstanceID
 
- Static Protected Attributes inherited from G4VPhysicsConstructor
static G4RUN_DLL G4VPCManager subInstanceManager
 

Detailed Description

Definition at line 36 of file G4EmLivermorePhysics.hh.

Constructor & Destructor Documentation

G4EmLivermorePhysics::G4EmLivermorePhysics ( G4int  ver = 1)

Definition at line 128 of file G4EmLivermorePhysics.cc.

References bElectromagnetic, G4LossTableManager::Instance(), and G4VPhysicsConstructor::SetPhysicsType().

129  : G4VPhysicsConstructor("G4EmLivermorePhysics"), verbose(ver)
130 {
133 }
static G4LossTableManager * Instance()
G4VPhysicsConstructor(const G4String &="")
G4EmLivermorePhysics::G4EmLivermorePhysics ( G4int  ver,
const G4String name 
)

Definition at line 137 of file G4EmLivermorePhysics.cc.

References bElectromagnetic, G4LossTableManager::Instance(), and G4VPhysicsConstructor::SetPhysicsType().

138  : G4VPhysicsConstructor("G4EmLivermorePhysics"), verbose(ver)
139 {
142 }
static G4LossTableManager * Instance()
G4VPhysicsConstructor(const G4String &="")
G4EmLivermorePhysics::~G4EmLivermorePhysics ( )
virtual

Definition at line 146 of file G4EmLivermorePhysics.cc.

147 {}

Member Function Documentation

void G4EmLivermorePhysics::ConstructParticle ( void  )
virtual

Implements G4VPhysicsConstructor.

Definition at line 151 of file G4EmLivermorePhysics.cc.

References G4Alpha::Alpha(), G4AntiProton::AntiProton(), G4Deuteron::Deuteron(), G4Electron::Electron(), G4Gamma::Gamma(), G4GenericIon::GenericIonDefinition(), G4He3::He3(), G4KaonMinus::KaonMinusDefinition(), G4KaonPlus::KaonPlusDefinition(), G4MuonMinus::MuonMinus(), G4MuonPlus::MuonPlus(), G4PionMinus::PionMinusDefinition(), G4PionPlus::PionPlusDefinition(), G4Positron::Positron(), G4Proton::Proton(), and G4Triton::Triton().

152 {
153 // gamma
154  G4Gamma::Gamma();
155 
156 // leptons
161 
162 // mesons
167 
168 // baryons
171 
172 // ions
175  G4He3::He3();
176  G4Alpha::Alpha();
178 }
static G4KaonPlus * KaonPlusDefinition()
Definition: G4KaonPlus.cc:108
static G4GenericIon * GenericIonDefinition()
Definition: G4GenericIon.cc:88
static G4MuonPlus * MuonPlus()
Definition: G4MuonPlus.cc:99
static G4KaonMinus * KaonMinusDefinition()
Definition: G4KaonMinus.cc:108
static G4AntiProton * AntiProton()
Definition: G4AntiProton.cc:93
static G4PionMinus * PionMinusDefinition()
Definition: G4PionMinus.cc:93
static G4Triton * Triton()
Definition: G4Triton.cc:95
static G4PionPlus * PionPlusDefinition()
Definition: G4PionPlus.cc:93
static G4Proton * Proton()
Definition: G4Proton.cc:93
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
static G4Deuteron * Deuteron()
Definition: G4Deuteron.cc:94
static G4Positron * Positron()
Definition: G4Positron.cc:94
static G4MuonMinus * MuonMinus()
Definition: G4MuonMinus.cc:100
static G4Electron * Electron()
Definition: G4Electron.cc:94
static G4Alpha * Alpha()
Definition: G4Alpha.cc:89
static G4He3 * He3()
Definition: G4He3.cc:94
void G4EmLivermorePhysics::ConstructProcess ( void  )
virtual

Implements G4VPhysicsConstructor.

Definition at line 182 of file G4EmLivermorePhysics.cc.

References G4VMultipleScattering::AddEmModel(), G4VEnergyLossProcess::AddEmModel(), aParticleIterator, python.hepunit::eV, fUseDistanceToBoundary, G4cout, G4endl, G4ParticleDefinition::GetParticleName(), G4PhysicsListHelper::GetPhysicsListHelper(), G4VPhysicsConstructor::GetPhysicsName(), python.hepunit::GeV, G4LossTableManager::Instance(), python.hepunit::MeV, G4InuclParticleNames::mup, G4InuclParticleNames::pip, G4InuclParticleNames::pp, G4PhysicsListHelper::RegisterProcess(), G4VEmModel::SetActivationLowEnergyLimit(), G4LossTableManager::SetAtomDeexcitation(), G4EmProcessOptions::SetDEDXBinning(), G4VEmProcess::SetEmModel(), G4VEnergyLossProcess::SetEmModel(), G4VAtomDeexcitation::SetFluo(), G4VEmModel::SetHighEnergyLimit(), G4EmProcessOptions::SetLambdaBinning(), G4VEmModel::SetLowEnergyLimit(), G4EmProcessOptions::SetMaxEnergy(), G4VEmProcess::SetMaxKinEnergy(), G4EmProcessOptions::SetMinEnergy(), G4VEmProcess::SetMinKinEnergy(), G4EmProcessOptions::SetPolarAngleLimit(), G4VMultipleScattering::SetRangeFactor(), G4VEnergyLossProcess::SetStepFunction(), G4VMultipleScattering::SetStepLimitType(), G4EmProcessOptions::SetVerbose(), and python.hepunit::TeV.

183 {
184  if(verbose > 1) {
185  G4cout << "### " << GetPhysicsName() << " Construct Processes " << G4endl;
186  }
188 
189  // muon & hadron bremsstrahlung and pair production
198 
199  // muon & hadron multiple scattering
201  mumsc->AddEmModel(0, new G4WentzelVIModel());
203  //pimsc->AddEmModel(0, new G4WentzelVIModel());
205  //kmsc->AddEmModel(0, new G4WentzelVIModel());
207  //pmsc->AddEmModel(0, new G4WentzelVIModel());
208  G4hMultipleScattering* hmsc = new G4hMultipleScattering("ionmsc");
209 
210  // high energy limit for e+- scattering models
211  G4double highEnergyLimit = 100*MeV;
212 
213  // nuclear stopping
214  G4NuclearStopping* ionnuc = new G4NuclearStopping();
215  G4NuclearStopping* pnuc = new G4NuclearStopping();
216 
217  // Add Livermore EM Processes
218  aParticleIterator->reset();
219 
220  while( (*aParticleIterator)() ){
221 
222  G4ParticleDefinition* particle = aParticleIterator->value();
223  G4String particleName = particle->GetParticleName();
224 
225  //Applicability range for Livermore models
226  //for higher energies, the Standard models are used
227  G4double LivermoreHighEnergyLimit = GeV;
228 
229  if (particleName == "gamma") {
230 
231  // Photoelectric effect - define low-energy model
232  G4PhotoElectricEffect* thePhotoElectricEffect = new G4PhotoElectricEffect();
233  G4LivermorePhotoElectricModel* theLivermorePhotoElectricModel =
235  thePhotoElectricEffect->SetEmModel(theLivermorePhotoElectricModel);
236  ph->RegisterProcess(thePhotoElectricEffect, particle);
237 
238  // Compton scattering - define low-energy model
239  G4ComptonScattering* theComptonScattering = new G4ComptonScattering();
240  G4LivermoreComptonModel* theLivermoreComptonModel =
242  theLivermoreComptonModel->SetHighEnergyLimit(LivermoreHighEnergyLimit);
243  theComptonScattering->SetEmModel(theLivermoreComptonModel, 1);
244  ph->RegisterProcess(theComptonScattering, particle);
245 
246  // gamma conversion - define low-energy model
247  G4GammaConversion* theGammaConversion = new G4GammaConversion();
248  G4VEmModel* theLivermoreGammaConversionModel =
250  theGammaConversion->SetEmModel(theLivermoreGammaConversionModel, 1);
251  ph->RegisterProcess(theGammaConversion, particle);
252 
253  // default Rayleigh scattering is Livermore
254  G4RayleighScattering* theRayleigh = new G4RayleighScattering();
255  ph->RegisterProcess(theRayleigh, particle);
256 
257  } else if (particleName == "e-") {
258 
259  // multiple scattering
262  G4UrbanMscModel* msc1 = new G4UrbanMscModel();
263  G4WentzelVIModel* msc2 = new G4WentzelVIModel();
264  msc1->SetHighEnergyLimit(highEnergyLimit);
265  msc2->SetLowEnergyLimit(highEnergyLimit);
266  msc->SetRangeFactor(0.01);
267  msc->AddEmModel(0, msc1);
268  msc->AddEmModel(0, msc2);
269 
272  ss->SetEmModel(ssm, 1);
273  ss->SetMinKinEnergy(highEnergyLimit);
274  ssm->SetLowEnergyLimit(highEnergyLimit);
275  ssm->SetActivationLowEnergyLimit(highEnergyLimit);
276 
277  // Ionisation - Livermore should be used only for low energies
278  G4eIonisation* eIoni = new G4eIonisation();
279  G4LivermoreIonisationModel* theIoniLivermore = new
281  theIoniLivermore->SetHighEnergyLimit(0.1*MeV);
282  eIoni->AddEmModel(0, theIoniLivermore, new G4UniversalFluctuation() );
283  eIoni->SetStepFunction(0.2, 100*um); //
284 
285  // Bremsstrahlung
286  G4eBremsstrahlung* eBrem = new G4eBremsstrahlung();
287  G4VEmModel* theBremLivermore = new G4LivermoreBremsstrahlungModel();
288  theBremLivermore->SetHighEnergyLimit(1*GeV);
289  //theBremLivermore->SetAngularDistribution(new G4Generator2BS());
290  eBrem->SetEmModel(theBremLivermore,1);
291 
292  // register processes
293  ph->RegisterProcess(msc, particle);
294  ph->RegisterProcess(eIoni, particle);
295  ph->RegisterProcess(eBrem, particle);
296  ph->RegisterProcess(ss, particle);
297 
298  } else if (particleName == "e+") {
299 
300  // Identical to G4EmStandardPhysics_option3
301 
302  // multiple scattering
305  G4UrbanMscModel* msc1 = new G4UrbanMscModel();
306  G4WentzelVIModel* msc2 = new G4WentzelVIModel();
307  msc1->SetHighEnergyLimit(highEnergyLimit);
308  msc2->SetLowEnergyLimit(highEnergyLimit);
309  msc->SetRangeFactor(0.01);
310  msc->AddEmModel(0, msc1);
311  msc->AddEmModel(0, msc2);
312 
315  ss->SetEmModel(ssm, 1);
316  ss->SetMinKinEnergy(highEnergyLimit);
317  ssm->SetLowEnergyLimit(highEnergyLimit);
318  ssm->SetActivationLowEnergyLimit(highEnergyLimit);
319 
320  G4eIonisation* eIoni = new G4eIonisation();
321  eIoni->SetStepFunction(0.2, 100*um);
322 
323  // register processes
324  ph->RegisterProcess(msc, particle);
325  ph->RegisterProcess(eIoni, particle);
326  ph->RegisterProcess(new G4eBremsstrahlung(), particle);
327  ph->RegisterProcess(new G4eplusAnnihilation(), particle);
328  ph->RegisterProcess(ss, particle);
329 
330  } else if (particleName == "mu+" ||
331  particleName == "mu-" ) {
332 
333  G4MuIonisation* muIoni = new G4MuIonisation();
334  muIoni->SetStepFunction(0.2, 50*um);
335 
336  ph->RegisterProcess(mumsc, particle);
337  ph->RegisterProcess(muIoni, particle);
338  ph->RegisterProcess(mub, particle);
339  ph->RegisterProcess(mup, particle);
340  ph->RegisterProcess(new G4CoulombScattering(), particle);
341 
342  } else if (particleName == "alpha" ||
343  particleName == "He3" ) {
344 
345  // Identical to G4EmStandardPhysics_option3
346 
348  G4ionIonisation* ionIoni = new G4ionIonisation();
349  ionIoni->SetStepFunction(0.1, 10*um);
350 
351  ph->RegisterProcess(msc, particle);
352  ph->RegisterProcess(ionIoni, particle);
353  ph->RegisterProcess(ionnuc, particle);
354 
355  } else if (particleName == "GenericIon") {
356 
357  // Identical to G4EmStandardPhysics_option3
358 
359  G4ionIonisation* ionIoni = new G4ionIonisation();
360  ionIoni->SetEmModel(new G4IonParametrisedLossModel());
361  ionIoni->SetStepFunction(0.1, 1*um);
362 
363  ph->RegisterProcess(hmsc, particle);
364  ph->RegisterProcess(ionIoni, particle);
365  ph->RegisterProcess(ionnuc, particle);
366 
367  } else if (particleName == "pi+" ||
368  particleName == "pi-" ) {
369 
370  //G4hMultipleScattering* pimsc = new G4hMultipleScattering();
371  G4hIonisation* hIoni = new G4hIonisation();
372  hIoni->SetStepFunction(0.2, 50*um);
373 
374  ph->RegisterProcess(pimsc, particle);
375  ph->RegisterProcess(hIoni, particle);
376  ph->RegisterProcess(pib, particle);
377  ph->RegisterProcess(pip, particle);
378 
379  } else if (particleName == "kaon+" ||
380  particleName == "kaon-" ) {
381 
382  //G4hMultipleScattering* kmsc = new G4hMultipleScattering();
383  G4hIonisation* hIoni = new G4hIonisation();
384  hIoni->SetStepFunction(0.2, 50*um);
385 
386  ph->RegisterProcess(kmsc, particle);
387  ph->RegisterProcess(hIoni, particle);
388  ph->RegisterProcess(kb, particle);
389  ph->RegisterProcess(kp, particle);
390 
391  } else if (particleName == "proton" ||
392  particleName == "anti_proton") {
393 
394  //G4hMultipleScattering* pmsc = new G4hMultipleScattering();
395  G4hIonisation* hIoni = new G4hIonisation();
396  hIoni->SetStepFunction(0.2, 50*um);
397 
398  ph->RegisterProcess(pmsc, particle);
399  ph->RegisterProcess(hIoni, particle);
400  ph->RegisterProcess(pb, particle);
401  ph->RegisterProcess(pp, particle);
402  ph->RegisterProcess(pnuc, particle);
403 
404  } else if (particleName == "B+" ||
405  particleName == "B-" ||
406  particleName == "D+" ||
407  particleName == "D-" ||
408  particleName == "Ds+" ||
409  particleName == "Ds-" ||
410  particleName == "anti_He3" ||
411  particleName == "anti_alpha" ||
412  particleName == "anti_deuteron" ||
413  particleName == "anti_lambda_c+" ||
414  particleName == "anti_omega-" ||
415  particleName == "anti_sigma_c+" ||
416  particleName == "anti_sigma_c++" ||
417  particleName == "anti_sigma+" ||
418  particleName == "anti_sigma-" ||
419  particleName == "anti_triton" ||
420  particleName == "anti_xi_c+" ||
421  particleName == "anti_xi-" ||
422  particleName == "deuteron" ||
423  particleName == "lambda_c+" ||
424  particleName == "omega-" ||
425  particleName == "sigma_c+" ||
426  particleName == "sigma_c++" ||
427  particleName == "sigma+" ||
428  particleName == "sigma-" ||
429  particleName == "tau+" ||
430  particleName == "tau-" ||
431  particleName == "triton" ||
432  particleName == "xi_c+" ||
433  particleName == "xi-" ) {
434 
435  // Identical to G4EmStandardPhysics_option3
436 
437  ph->RegisterProcess(hmsc, particle);
438  ph->RegisterProcess(new G4hIonisation(), particle);
439  ph->RegisterProcess(pnuc, particle);
440  }
441  }
442 
443  // Em options
444  //
445  G4EmProcessOptions opt;
446  opt.SetVerbose(verbose);
447 
448  // Multiple Coulomb scattering
449  //
450  opt.SetPolarAngleLimit(CLHEP::pi);
451 
452  // Physics tables
453  //
454 
455  opt.SetMinEnergy(100*eV);
456  opt.SetMaxEnergy(10*TeV);
457  opt.SetDEDXBinning(220);
458  opt.SetLambdaBinning(220);
459 
460  // Nuclear stopping
461  pnuc->SetMaxKinEnergy(MeV);
462 
463  // Ionization
464  //
465  //opt.SetSubCutoff(true);
466 
467  // Deexcitation
468  //
471  de->SetFluo(true);
472 }
static G4LossTableManager * Instance()
void SetMinEnergy(G4double val)
void SetStepFunction(G4double v1, G4double v2)
const G4String & GetParticleName() const
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:683
void SetDEDXBinning(G4int val)
void SetEmModel(G4VEmModel *, G4int index=1)
G4GLOB_DLL std::ostream G4cout
void SetLambdaBinning(G4int val)
#define aParticleIterator
G4bool RegisterProcess(G4VProcess *process, G4ParticleDefinition *particle)
void AddEmModel(G4int, G4VEmModel *, G4VEmFluctuationModel *fluc=0, const G4Region *region=0)
const G4String & GetPhysicsName() const
void SetMaxEnergy(G4double val)
void SetActivationLowEnergyLimit(G4double)
Definition: G4VEmModel.hh:704
void SetMaxKinEnergy(G4double e)
void AddEmModel(G4int order, G4VEmModel *, const G4Region *region=0)
static G4PhysicsListHelper * GetPhysicsListHelper()
void SetEmModel(G4VEmModel *, G4int index=1)
#define G4endl
Definition: G4ios.hh:61
void SetMinKinEnergy(G4double e)
double G4double
Definition: G4Types.hh:76
void SetLowEnergyLimit(G4double)
Definition: G4VEmModel.hh:690
void SetRangeFactor(G4double val)
void SetAtomDeexcitation(G4VAtomDeexcitation *)
void SetStepLimitType(G4MscStepLimitType val)
void SetVerbose(G4int val, const G4String &name="all", G4bool worker=false)
void SetPolarAngleLimit(G4double val)

The documentation for this class was generated from the following files: