Geant4.10
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Public Member Functions
G4E1Probability Class Reference

#include <G4E1Probability.hh>

Inheritance diagram for G4E1Probability:
G4VEmissionProbability

Public Member Functions

 G4E1Probability ()
 
virtual ~G4E1Probability ()
 
G4double EmissionProbability (const G4Fragment &frag, G4double excite)
 
G4double EmissionProbDensity (const G4Fragment &frag, G4double ePhoton)
 
- Public Member Functions inherited from G4VEmissionProbability
 G4VEmissionProbability ()
 
virtual ~G4VEmissionProbability ()
 
void SetOPTxs (G4int opt)
 
void UseSICB (G4bool use)
 

Additional Inherited Members

- Protected Attributes inherited from G4VEmissionProbability
G4int OPTxs
 
G4bool useSICB
 
G4PowfG4pow
 
G4PairingCorrectionfPairCorr
 
G4EvaporationLevelDensityParametertheEvapLDPptr
 

Detailed Description

Definition at line 49 of file G4E1Probability.hh.

Constructor & Destructor Documentation

G4E1Probability::G4E1Probability ( )

Definition at line 50 of file G4E1Probability.cc.

References G4Pow::GetInstance(), python.hepunit::MeV, and test::x.

51 {
52  G4double x = CLHEP::pi*CLHEP::hbarc;
53  normC = 1.0 / (x*x);
54  theLevelDensityParameter = 0.125/MeV;
55  fG4pow = G4Pow::GetInstance();
56 }
static G4Pow * GetInstance()
Definition: G4Pow.cc:53
double G4double
Definition: G4Types.hh:76
G4E1Probability::~G4E1Probability ( )
virtual

Definition at line 58 of file G4E1Probability.cc.

59 {}

Member Function Documentation

G4double G4E1Probability::EmissionProbability ( const G4Fragment frag,
G4double  excite 
)
virtual

Implements G4VEmissionProbability.

Definition at line 139 of file G4E1Probability.cc.

141 {
142  // From nuclear fragment properties and the excitation energy, calculate
143  // the probability for photon evaporation down to last ground level.
144  // fragment = nuclear fragment BEFORE de-excitation
145 
146  G4double upperLim = gammaE;
147  G4double lowerLim = 0.0;
148 
149  //G4cout << "G4E1Probability::EmissionProbability: Emin= " << lowerLim
150  // << " Emax= " << upperLim << G4endl;
151  if( upperLim - lowerLim <= CLHEP::keV ) { return 0.0; }
152 
153  // Need to integrate EmissionProbDensity from lowerLim to upperLim
154  // and multiply by factor 3 (?!)
155 
156  G4double integ = 3.0 * EmissionIntegration(frag,lowerLim,upperLim);
157 
158  return integ;
159 
160 }
double G4double
Definition: G4Types.hh:76
G4double G4E1Probability::EmissionProbDensity ( const G4Fragment frag,
G4double  ePhoton 
)

Definition at line 64 of file G4E1Probability.cc.

References G4Fragment::GetA_asInt(), G4Fragment::GetExcitationEnergy(), G4INCL::Math::max(), python.hepunit::MeV, python.hepunit::millibarn, and G4Pow::powZ().

66 {
67 
68  // Calculate the probability density here
69 
70  // From nuclear fragment properties and the excitation energy, calculate
71  // the probability density for photon evaporation from U to U - gammaE
72  // (U = nucleus excitation energy, gammaE = total evaporated photon
73  // energy). Fragment = nuclear fragment BEFORE de-excitation
74 
75  G4double theProb = 0.0;
76 
77  G4int Afrag = frag.GetA_asInt();
78  G4double Uexcite = frag.GetExcitationEnergy();
79  G4double U = std::max(0.0,Uexcite-gammaE);
80 
81  if(gammaE < 0.0) { return theProb; }
82 
83  // Need a level density parameter.
84  // For now, just use the constant approximation (not reliable near magic
85  // nuclei).
86 
87  G4double aLevelDensityParam = Afrag*theLevelDensityParameter;
88 
89  // G4double levelDensBef = std::exp(2*std::sqrt(aLevelDensityParam*Uexcite));
90  // G4double levelDensAft = std::exp(2*std::sqrt(aLevelDensityParam*(Uexcite-gammaE)));
91  // VI reduce number of calls to exp
92  G4double levelDens =
93  std::exp(2*(std::sqrt(aLevelDensityParam*U)-std::sqrt(aLevelDensityParam*Uexcite)));
94  // Now form the probability density
95 
96  // Define constants for the photoabsorption cross-section (the reverse
97  // process of our de-excitation)
98 
99  G4double sigma0 = 2.5 * Afrag * millibarn; // millibarns
100 
101  G4double Egdp = (40.3 / fG4pow->powZ(Afrag,0.2) )*MeV;
102  G4double GammaR = 0.30 * Egdp;
103 
104  // CD
105  //cout<<" PROB TESTS "<<G4endl;
106  //cout<<" hbarc = "<<hbarc<<G4endl;
107  //cout<<" pi = "<<pi<<G4endl;
108  //cout<<" Uexcite, gammaE = "<<Uexcite<<" "<<gammaE<<G4endl;
109  //cout<<" Uexcite, gammaE = "<<Uexcite*MeV<<" "<<gammaE*MeV<<G4endl;
110  //cout<<" lev density param = "<<aLevelDensityParam<<G4endl;
111  //cout<<" level densities = "<<levelDensBef<<" "<<levelDensAft<<G4endl;
112  //cout<<" sigma0 = "<<sigma0<<G4endl;
113  //cout<<" Egdp, GammaR = "<<Egdp<<" "<<GammaR<<G4endl;
114  //cout<<" normC = "<<normC<<G4endl;
115 
116  // VI implementation 18.05.2010
117  G4double gammaE2 = gammaE*gammaE;
118  G4double gammaR2 = gammaE2*GammaR*GammaR;
119  G4double egdp2 = gammaE2 - Egdp*Egdp;
120  G4double sigmaAbs = sigma0*gammaR2/(egdp2*egdp2 + gammaR2);
121  theProb = normC * sigmaAbs * gammaE2 * levelDens;
122 
123  // old implementation
124  // G4double numerator = sigma0 * gammaE*gammaE * GammaR*GammaR;
125  // G4double denominator = (gammaE*gammaE - Egdp*Egdp)*
126  // (gammaE*gammaE - Egdp*Egdp) + GammaR*GammaR*gammaE*gammaE;
127 
128  //G4double sigmaAbs = numerator/denominator;
129  //theProb = normC * sigmaAbs * gammaE2 * levelDensAft/levelDensBef;
130 
131  // CD
132  //cout<<" sigmaAbs = "<<sigmaAbs<<G4endl;
133  //cout<<" Probability = "<<theProb<<G4endl;
134 
135  return theProb;
136 
137 }
int G4int
Definition: G4Types.hh:78
int millibarn
Definition: hepunit.py:40
G4int GetA_asInt() const
Definition: G4Fragment.hh:238
T max(const T t1, const T t2)
brief Return the largest of the two arguments
G4double powZ(G4int Z, G4double y) const
Definition: G4Pow.hh:258
double G4double
Definition: G4Types.hh:76
G4double GetExcitationEnergy() const
Definition: G4Fragment.hh:255

The documentation for this class was generated from the following files: