Geant4.10
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4INCLNuclearDensity.hh
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // INCL++ intra-nuclear cascade model
27 // Pekka Kaitaniemi, CEA and Helsinki Institute of Physics
28 // Davide Mancusi, CEA
29 // Alain Boudard, CEA
30 // Sylvie Leray, CEA
31 // Joseph Cugnon, University of Liege
32 //
33 #define INCLXX_IN_GEANT4_MODE 1
34 
35 #include "globals.hh"
36 
37 #ifndef G4INCLNuclearDensity_hh
38 #define G4INCLNuclearDensity_hh 1
39 
40 #include <vector>
41 #include <map>
42 // #include <cassert>
43 #include "G4INCLThreeVector.hh"
44 #include "G4INCLIFunction1D.hh"
45 #include "G4INCLParticle.hh"
46 #include "G4INCLGlobals.hh"
47 #include "G4INCLRandom.hh"
50 
51 namespace G4INCL {
52 
54  public:
55  NuclearDensity(const G4int A, const G4int Z, InverseInterpolationTable const * const rpCorrelationTableProton, InverseInterpolationTable const * const rpCorrelationTableNeutron);
57 
58  /// \brief Copy constructor
59  NuclearDensity(const NuclearDensity &rhs);
60 
61  /// \brief Assignment operator
63 
64  /// \brief Helper method for the assignment operator
65  void swap(NuclearDensity &rhs);
66 
67  /** \brief Get the maximum allowed radius for a given momentum.
68  * \param t type of the particle
69  * \param p absolute value of the particle momentum, divided by the
70  * relevant Fermi momentum.
71  * \return maximum allowed radius.
72  */
73  G4double getMaxRFromP(const ParticleType t, const G4double p) const;
74 
75  G4double getMinPFromR(const ParticleType t, const G4double r) const;
76 
77  G4double getMaximumRadius() const { return theMaximumRadius; };
78 
79  /** \brief The radius used for calculating the transmission coefficient.
80  *
81  * \return the radius
82  */
83  G4double getTransmissionRadius(Particle const * const p) const {
84  const ParticleType t = p->getType();
85 // assert(t!=Neutron && t!=PiZero && t!=DeltaZero); // no neutral particles here
86  if(t==Composite) {
87  return transmissionRadius[t] +
89  } else
90  return transmissionRadius[t];
91  };
92 
93  /** \brief The radius used for calculating the transmission coefficient.
94  *
95  * \return the radius
96  */
98 // assert(type!=Composite);
99  return transmissionRadius[type];
100  };
101 
102  /// \brief Get the mass number.
103  G4int getA() const { return theA; }
104 
105  /// \brief Get the charge number.
106  G4int getZ() const { return theZ; }
107 
108  G4double getProtonNuclearRadius() const { return theProtonNuclearRadius; }
109  void setProtonNuclearRadius(const G4double r) { theProtonNuclearRadius = r; }
110 
111  private:
112 
113  /** \brief Initialize the transmission radius. */
114  void initializeTransmissionRadii();
115 
116  G4int theA, theZ;
117  G4double theMaximumRadius;
118  /// \brief Represents INCL4.5's R0 variable
119  G4double theProtonNuclearRadius;
120 
121  /* \brief map of transmission radii per particle type */
122  G4double transmissionRadius[UnknownParticle];
123 
126  };
127 
128 }
129 
130 #endif
G4int getA() const
Returns the baryon number.
Simple interpolation table for the inverse of a IFunction1D functor.
G4double getMinPFromR(const ParticleType t, const G4double r) const
Abstract interface to the nuclear potential.
const char * p
Definition: xmltok.h:285
NuclearDensity(const G4int A, const G4int Z, InverseInterpolationTable const *const rpCorrelationTableProton, InverseInterpolationTable const *const rpCorrelationTableNeutron)
G4int getA() const
Get the mass number.
G4double getTransmissionRadius(ParticleType type) const
The radius used for calculating the transmission coefficient.
G4int getZ() const
Get the charge number.
NuclearDensity & operator=(const NuclearDensity &rhs)
Assignment operator.
void setProtonNuclearRadius(const G4double r)
int G4int
Definition: G4Types.hh:78
G4double getProtonNuclearRadius() const
G4double getNuclearRadius(const ParticleType t, const G4int A, const G4int Z)
G4int getZ() const
Returns the charge number.
Class for interpolating the inverse of a 1-dimensional function.
void swap(NuclearDensity &rhs)
Helper method for the assignment operator.
G4INCL::ParticleType getType() const
G4double getMaximumRadius() const
Functor for 1-dimensional mathematical functions.
double G4double
Definition: G4Types.hh:76
G4double getTransmissionRadius(Particle const *const p) const
The radius used for calculating the transmission coefficient.
G4double getMaxRFromP(const ParticleType t, const G4double p) const
Get the maximum allowed radius for a given momentum.