G4ionEffectiveCharge Class Reference

#include <G4ionEffectiveCharge.hh>


Public Member Functions

 G4ionEffectiveCharge ()
virtual ~G4ionEffectiveCharge ()
G4double EffectiveChargeSquareRatio (const G4ParticleDefinition *p, const G4Material *material, G4double kineticEnergy)
G4double EffectiveCharge (const G4ParticleDefinition *p, const G4Material *material, G4double kineticEnergy)


Detailed Description

Definition at line 62 of file G4ionEffectiveCharge.hh.


Constructor & Destructor Documentation

G4ionEffectiveCharge::G4ionEffectiveCharge (  ) 

Definition at line 62 of file G4ionEffectiveCharge.cc.

References G4NistManager::Instance().

00063 {
00064   chargeCorrection = 1.0;
00065   energyHighLimit  = 20.0*MeV;
00066   energyLowLimit   = 1.0*keV;
00067   energyBohr       = 25.*keV;
00068   massFactor       = amu_c2/(proton_mass_c2*keV);
00069   minCharge        = 1.0;
00070   lastPart         = 0;
00071   lastMat          = 0;
00072   lastKinEnergy    = 0.0;
00073   effCharge        = eplus;
00074   nist = G4NistManager::Instance();
00075 }

G4ionEffectiveCharge::~G4ionEffectiveCharge (  )  [virtual]

Definition at line 79 of file G4ionEffectiveCharge.cc.

00080 {}


Member Function Documentation

G4double G4ionEffectiveCharge::EffectiveCharge ( const G4ParticleDefinition p,
const G4Material material,
G4double  kineticEnergy 
)

Definition at line 84 of file G4ionEffectiveCharge.cc.

References G4IonisParamMat::GetFermiEnergy(), G4Material::GetIonisation(), G4ParticleDefinition::GetPDGCharge(), G4ParticleDefinition::GetPDGMass(), G4NistManager::GetZ13(), G4IonisParamMat::GetZeffective(), and G4InuclParticleNames::lambda.

Referenced by G4MuElecInelasticModel::CrossSectionPerVolume(), EffectiveChargeSquareRatio(), and G4EmCorrections::GetParticleCharge().

00087 {
00088   if(p == lastPart && material == lastMat && kineticEnergy == lastKinEnergy)
00089     return effCharge;
00090 
00091   lastPart      = p;
00092   lastMat       = material;
00093   lastKinEnergy = kineticEnergy;
00094 
00095   G4double mass   = p->GetPDGMass();
00096   G4double charge = p->GetPDGCharge();
00097   G4double Zi     = charge/eplus;
00098 
00099   chargeCorrection = 1.0;
00100   effCharge = charge;
00101 
00102   // The aproximation of ion effective charge from:
00103   // J.F.Ziegler, J.P. Biersack, U. Littmark
00104   // The Stopping and Range of Ions in Matter,
00105   // Vol.1, Pergamon Press, 1985
00106   // Fast ions or hadrons
00107   G4double reducedEnergy = kineticEnergy * proton_mass_c2/mass ;
00108 
00109   //G4cout << "e= " << reducedEnergy << " Zi= " << Zi << "  " << material->GetName() << G4endl;
00110 
00111   if( reducedEnergy > Zi*energyHighLimit || Zi < 1.5 || !material) return charge;
00112 
00113   G4double z    = material->GetIonisation()->GetZeffective();
00114   reducedEnergy = std::max(reducedEnergy,energyLowLimit);
00115 
00116   // Helium ion case
00117   if( Zi < 2.5 ) {
00118 
00119     static G4double c[6] = {0.2865,  0.1266, -0.001429,
00120                             0.02402,-0.01135, 0.001475} ;
00121 
00122     G4double Q = std::max(0.0,std::log(reducedEnergy*massFactor));
00123     G4double x = c[0];
00124     G4double y = 1.0;
00125     for (G4int i=1; i<6; i++) {
00126       y *= Q;
00127       x += y * c[i] ;
00128     }
00129     G4double ex;
00130     if(x < 0.2) ex = x * (1 - 0.5*x);
00131     else        ex = 1. - std::exp(-x);
00132 
00133     G4double tq = 7.6 - Q;
00134     G4double tq2= tq*tq;
00135     G4double tt = ( 0.007 + 0.00005 * z );
00136     if(tq2 < 0.2) tt *= (1.0 - tq2 + 0.5*tq2*tq2);
00137     else          tt *= std::exp(-tq2);
00138 
00139     effCharge = charge*(1.0 + tt) * std::sqrt(ex);
00140 
00141     // Heavy ion case
00142   } else {
00143     
00144     G4double y;
00145     //    = nist->GetZ13(z);
00146     //G4double z23  = y*y;
00147     G4double zi13 = nist->GetZ13(Zi);
00148     G4double zi23 = zi13*zi13;
00149     //    G4double e = std::max(reducedEnergy,energyBohr/z23);
00150     //G4double e = reducedEnergy;
00151 
00152     // v1 is ion velocity in vF unit
00153     G4double eF   = material->GetIonisation()->GetFermiEnergy();
00154     G4double v1sq = reducedEnergy/eF;
00155     G4double vFsq = eF/energyBohr;
00156     G4double vF   = std::sqrt(eF/energyBohr);
00157 
00158     // Faster than Fermi velocity
00159     if ( v1sq > 1.0 ) {
00160       y = vF * std::sqrt(v1sq) * ( 1.0 + 0.2/v1sq ) / zi23 ;
00161 
00162       // Slower than Fermi velocity
00163     } else {
00164       y = 0.692308 * vF * (1.0 + 0.666666*v1sq + v1sq*v1sq/15.0) / zi23 ;
00165     }
00166 
00167     G4double q;
00168     G4double y3 = std::pow(y, 0.3) ;
00169     // G4cout<<"y= "<<y<<" y3= "<<y3<<" v1= "<<v1<<" vF= "<<vF<<G4endl; 
00170     q = 1.0 - std::exp( 0.803*y3 - 1.3167*y3*y3 - 0.38157*y - 0.008983*y*y ) ;
00171     
00172     //y *= 0.77;
00173     //y *= (0.75 + 0.52/Zi);
00174 
00175     //if( y < 0.2 ) q = y*(1.0 - 0.5*y);
00176     //else          q = 1.0 - std::exp(-y);
00177 
00178     G4double qmin = minCharge/Zi;
00179     if(q < qmin) q = qmin;
00180   
00181     effCharge = q*charge;
00182 
00183     /*
00184     G4double x1 = 1.0*effCharge*(1.0 - 0.132*std::log(y))/(y*std::sqrt(z));
00185     G4double x2 = 0.1*effCharge*effCharge*energyBohr/reducedEnergy;
00186 
00187     chargeCorrection = 1.0 + x1 - x2;
00188 
00189     G4cout << "x1= "<<x1<<" x2= "<< x2<<" corr= "<<chargeCorrection<<G4endl;
00190     */
00191     
00192     G4double tq = 7.6 - std::log(reducedEnergy/keV);
00193     G4double tq2= tq*tq;
00194     G4double sq = ( 0.18 + 0.0015 * z ) / (Zi*Zi);
00195     if(tq2 < 0.2) sq *= (1.0 - tq2 + 0.5*tq2*tq2);
00196     else          sq *= std::exp(-tq2);
00197     sq += 1.0;
00198     //    G4cout << "sq= " << sq << G4endl;
00199 
00200     // Screen length according to
00201     // J.F.Ziegler and J.M.Manoyan, The stopping of ions in compaunds,
00202     // Nucl. Inst. & Meth. in Phys. Res. B35 (1988) 215-228.
00203 
00204     G4double lambda = 10.0 * vF / (zi13 * (6.0 + q));
00205     if(q < 0.2) lambda *= (1.0 - 0.66666667*q - q*q/9.0);
00206     else        lambda *= std::pow(1.0-q, 0.666666);
00207 
00208     G4double lambda2 = lambda*lambda;
00209 
00210     G4double xx = (0.5/q - 0.5)/vFsq;
00211     if(lambda2 < 0.2) xx *= lambda2*(1.0 - 0.5*lambda2);
00212     else              xx *= std::log(1.0 + lambda2); 
00213 
00214     chargeCorrection = sq * (1.0 + xx);
00215     
00216   }
00217   //  G4cout << "G4ionEffectiveCharge: charge= " << charge << " q= " << q 
00218   //         << " chargeCor= " << chargeCorrection 
00219   //       << " e(MeV)= " << kineticEnergy/MeV << G4endl;
00220   return effCharge;
00221 }

G4double G4ionEffectiveCharge::EffectiveChargeSquareRatio ( const G4ParticleDefinition p,
const G4Material material,
G4double  kineticEnergy 
) [inline]

Definition at line 105 of file G4ionEffectiveCharge.hh.

References EffectiveCharge().

Referenced by G4EmCorrections::EffectiveChargeSquareRatio().

00109 {
00110   G4double charge = effCharge;
00111   if( kineticEnergy != lastKinEnergy || material != lastMat || p != lastPart) {
00112     charge = EffectiveCharge(p,material,kineticEnergy);
00113   }
00114   charge *= chargeCorrection/CLHEP::eplus;
00115 
00116   return charge*charge;
00117 }


The documentation for this class was generated from the following files:
Generated on Mon May 27 17:52:17 2013 for Geant4 by  doxygen 1.4.7