G4LEPionMinusInelastic Class Reference

#include <G4LEPionMinusInelastic.hh>

Inheritance diagram for G4LEPionMinusInelastic:

G4InelasticInteraction G4HadronicInteraction

Public Member Functions

 G4LEPionMinusInelastic (const G4String &name="G4LEPionMinusInelastic")
 ~G4LEPionMinusInelastic ()
G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
virtual void ModelDescription (std::ostream &outFile) const

Detailed Description

Definition at line 44 of file G4LEPionMinusInelastic.hh.


Constructor & Destructor Documentation

G4LEPionMinusInelastic::G4LEPionMinusInelastic ( const G4String name = "G4LEPionMinusInelastic"  ) 

Definition at line 37 of file G4LEPionMinusInelastic.cc.

References G4cout, G4endl, G4HadronicInteraction::SetMaxEnergy(), and G4HadronicInteraction::SetMinEnergy().

00038  : G4InelasticInteraction(name)
00039 {
00040   SetMinEnergy(0.0);
00041   SetMaxEnergy(55.*GeV);
00042   G4cout << "WARNING: model G4LEPionMinusInelastic is being deprecated and will\n"
00043          << "disappear in Geant4 version 10.0"  << G4endl;
00044 }

G4LEPionMinusInelastic::~G4LEPionMinusInelastic (  )  [inline]

Definition at line 50 of file G4LEPionMinusInelastic.hh.

00050 {}


Member Function Documentation

G4HadFinalState * G4LEPionMinusInelastic::ApplyYourself ( const G4HadProjectile aTrack,
G4Nucleus targetNucleus 
) [virtual]

Implements G4HadronicInteraction.

Definition at line 62 of file G4LEPionMinusInelastic.cc.

References G4InelasticInteraction::CalculateMomenta(), G4Nucleus::Cinema(), G4InelasticInteraction::DoIsotopeCounting(), G4Nucleus::EvaporationEffects(), G4cout, G4endl, G4HadProjectile::Get4Momentum(), G4HadProjectile::GetDefinition(), G4DynamicParticle::GetDefinition(), G4ReactionProduct::GetKineticEnergy(), G4HadProjectile::GetKineticEnergy(), G4HadProjectile::GetMaterial(), G4ReactionProduct::GetMomentum(), G4Material::GetName(), G4ParticleDefinition::GetParticleName(), G4ParticleDefinition::GetPDGMass(), G4FastVector< Type, N >::Initialize(), isAlive, G4InelasticInteraction::isotopeProduction, G4InuclParticleNames::pp, G4Nucleus::ReturnTargetParticle(), G4HadFinalState::SetEnergyChange(), G4ReactionProduct::SetKineticEnergy(), G4ReactionProduct::SetMomentum(), G4HadFinalState::SetMomentumChange(), G4ReactionProduct::SetSide(), G4HadFinalState::SetStatusChange(), G4InelasticInteraction::SetUpChange(), G4HadronicInteraction::theParticleChange, and G4HadronicInteraction::verboseLevel.

00064 {
00065   const G4HadProjectile *originalIncident = &aTrack;
00066   if (originalIncident->GetKineticEnergy()<= 0.1*MeV) {
00067     theParticleChange.SetStatusChange(isAlive);
00068     theParticleChange.SetEnergyChange(aTrack.GetKineticEnergy());
00069     theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); 
00070     return &theParticleChange;      
00071   }
00072 
00073   // create the target particle  
00074   G4DynamicParticle* originalTarget = targetNucleus.ReturnTargetParticle();
00075   G4ReactionProduct targetParticle( originalTarget->GetDefinition() );
00076     
00077   if (verboseLevel > 1) {
00078     const G4Material* targetMaterial = aTrack.GetMaterial();
00079     G4cout << "G4PionMinusInelastic::ApplyYourself called" << G4endl;
00080     G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy() << "MeV, ";
00081     G4cout << "target material = " << targetMaterial->GetName() << ", ";
00082     G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
00083            << G4endl;
00084   }
00085   G4ReactionProduct currentParticle( 
00086   const_cast<G4ParticleDefinition *>(originalIncident->GetDefinition() ) );
00087   currentParticle.SetMomentum( originalIncident->Get4Momentum().vect() );
00088   currentParticle.SetKineticEnergy( originalIncident->GetKineticEnergy() );
00089     
00090   // Fermi motion and evaporation
00091   // As of Geant3, the Fermi energy calculation had not been Done  
00092   G4double ek = originalIncident->GetKineticEnergy();
00093   G4double amas = originalIncident->GetDefinition()->GetPDGMass();
00094     
00095   G4double tkin = targetNucleus.Cinema(ek);
00096   ek += tkin;
00097   currentParticle.SetKineticEnergy(ek);
00098   G4double et = ek + amas;
00099   G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
00100   G4double pp = currentParticle.GetMomentum().mag();
00101   if (pp > 0.0) {
00102     G4ThreeVector momentum = currentParticle.GetMomentum();
00103     currentParticle.SetMomentum(momentum * (p/pp) );
00104   }
00105     
00106   // calculate black track energies  
00107   tkin = targetNucleus.EvaporationEffects(ek);
00108   ek -= tkin;
00109   currentParticle.SetKineticEnergy(ek);
00110   et = ek + amas;
00111   p = std::sqrt( std::abs((et-amas)*(et+amas)) );
00112   pp = currentParticle.GetMomentum().mag();
00113   if (pp > 0.0) {
00114     G4ThreeVector momentum = currentParticle.GetMomentum();
00115     currentParticle.SetMomentum( momentum * (p/pp) );
00116   }
00117 
00118   G4ReactionProduct modifiedOriginal = currentParticle;
00119 
00120   currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
00121   targetParticle.SetSide( -1 );  // target always goes in backward hemisphere
00122   G4bool incidentHasChanged = false;
00123   G4bool targetHasChanged = false;
00124   G4bool quasiElastic = false;
00125   G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec;  // vec will contain the secondary particles
00126   G4int vecLen = 0;
00127   vec.Initialize(0);
00128     
00129   const G4double cutOff = 0.1*MeV;
00130   if (currentParticle.GetKineticEnergy() > cutOff)
00131     Cascade(vec, vecLen, originalIncident, currentParticle, targetParticle,
00132             incidentHasChanged, targetHasChanged, quasiElastic);
00133     
00134   CalculateMomenta(vec, vecLen, originalIncident, originalTarget,
00135                    modifiedOriginal, targetNucleus, currentParticle,
00136                    targetParticle, incidentHasChanged, targetHasChanged,
00137                    quasiElastic);
00138     
00139   SetUpChange(vec, vecLen, currentParticle, targetParticle, incidentHasChanged);
00140 
00141   if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
00142 
00143   delete originalTarget;
00144   return &theParticleChange;
00145 }

void G4LEPionMinusInelastic::ModelDescription ( std::ostream &  outFile  )  const [virtual]

Reimplemented from G4HadronicInteraction.

Definition at line 47 of file G4LEPionMinusInelastic.cc.

00048 {
00049   outFile << "G4LEPionMinusInelastic is one of the Low Energy Parameterized\n"
00050           << "(LEP) models used to implement inelastic pi- scattering\n"
00051           << "from nuclei.  It is a re-engineered version of the GHEISHA\n"
00052           << "code of H. Fesefeldt.  It divides the initial collision\n"
00053           << "products into backward- and forward-going clusters which are\n"
00054           << "then decayed into final state hadrons.  The model does not\n"
00055           << "conserve energy on an event-by-event basis.  It may be\n"
00056           << "applied to pions with initial energies between 0 and 25\n"
00057           << "GeV.\n";
00058 }


The documentation for this class was generated from the following files:
Generated on Mon May 27 17:52:23 2013 for Geant4 by  doxygen 1.4.7