G4LEDeuteronInelastic Class Reference

#include <G4LEDeuteronInelastic.hh>

Inheritance diagram for G4LEDeuteronInelastic:

G4InelasticInteraction G4HadronicInteraction

Public Member Functions

 G4LEDeuteronInelastic ()
 ~G4LEDeuteronInelastic ()
G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
virtual void ModelDescription (std::ostream &outFile) const

Detailed Description

Definition at line 45 of file G4LEDeuteronInelastic.hh.


Constructor & Destructor Documentation

G4LEDeuteronInelastic::G4LEDeuteronInelastic (  )  [inline]

Definition at line 49 of file G4LEDeuteronInelastic.hh.

References G4cout, G4endl, G4HadronicInteraction::SetMaxEnergy(), and G4HadronicInteraction::SetMinEnergy().

00049                             : G4InelasticInteraction("G4LEDeuteronInelastic")
00050     {
00051       SetMinEnergy( 0.0 );
00052       // SetMaxEnergy( 100.*CLHEP::MeV );  // NUCREC only worked for energies < 100MeV
00053       // Work around to avoid exception in G4EnergyRangeManager
00054       SetMaxEnergy( 10.*CLHEP::TeV );  // NUCREC only worked for energies < 100MeV
00055       G4cout << "WARNING: model G4LEDeuteronInelastic is being deprecated and will\n"
00056              << "disappear in Geant4 version 10.0"  << G4endl;
00057     }

G4LEDeuteronInelastic::~G4LEDeuteronInelastic (  )  [inline]

Definition at line 59 of file G4LEDeuteronInelastic.hh.

00059 {}


Member Function Documentation

G4HadFinalState * G4LEDeuteronInelastic::ApplyYourself ( const G4HadProjectile aTrack,
G4Nucleus targetNucleus 
) [virtual]

Implements G4HadronicInteraction.

Definition at line 51 of file G4LEDeuteronInelastic.cc.

References G4HadFinalState::AddSecondary(), G4Nucleus::AtomicMass(), G4HadFinalState::Clear(), G4InelasticInteraction::DoIsotopeCounting(), G4cout, G4endl, G4HadProjectile::Get4Momentum(), G4Nucleus::GetA_asInt(), G4HadProjectile::GetKineticEnergy(), G4HadProjectile::GetMaterial(), G4Material::GetName(), G4Nucleus::GetZ_asInt(), G4FastVector< Type, N >::Initialize(), isAlive, G4InelasticInteraction::isotopeProduction, G4ReactionDynamics::NuclearReaction(), G4DynamicParticle::SetDefinition(), G4HadFinalState::SetEnergyChange(), G4DynamicParticle::SetMomentum(), G4HadFinalState::SetMomentumChange(), G4HadFinalState::SetStatusChange(), G4HadronicInteraction::theParticleChange, G4InelasticInteraction::theReactionDynamics, and G4HadronicInteraction::verboseLevel.

00053 { 
00054   theParticleChange.Clear();
00055   const G4HadProjectile* originalIncident = &aTrack;
00056     
00057   if (verboseLevel > 1) {
00058     const G4Material *targetMaterial = aTrack.GetMaterial();
00059     G4cout << "G4LEDeuteronInelastic::ApplyYourself called" << G4endl;
00060     G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
00061     G4cout << "target material = " << targetMaterial->GetName() << ", ";
00062   }
00063     
00064   // Work-around for lack of model above 100 MeV
00065   if (originalIncident->GetKineticEnergy()/MeV > 100. ||
00066       originalIncident->GetKineticEnergy() <= 0.1*MeV) {
00067     theParticleChange.SetStatusChange(isAlive);
00068     theParticleChange.SetEnergyChange(aTrack.GetKineticEnergy());
00069     theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); 
00070     return &theParticleChange;      
00071   }
00072 
00073   G4double A = targetNucleus.GetA_asInt();
00074   G4double Z = targetNucleus.GetZ_asInt();
00075   G4double theAtomicMass = targetNucleus.AtomicMass(A, Z);
00076   G4double massVec[9];
00077   massVec[0] = targetNucleus.AtomicMass( A+2.0, Z+1.0 );
00078   massVec[1] = targetNucleus.AtomicMass( A+1.0, Z+1.0 );
00079   massVec[2] = targetNucleus.AtomicMass( A+1.0, Z     );
00080   massVec[3] = theAtomicMass;
00081   massVec[4] = 0.;
00082   if (A > 1.0 && A-1.0 > Z) 
00083     massVec[4] = targetNucleus.AtomicMass(A-1.0, Z);
00084   massVec[5] = 0.;
00085   if (A > 2.0 && Z > 1.0 && A-2.0 > Z-1.0) 
00086     massVec[5] = targetNucleus.AtomicMass(A-2.0, Z-1.0);
00087   massVec[6] = 0.;
00088   if (A > Z+1.0) 
00089     massVec[6] = targetNucleus.AtomicMass(A, Z+1.0);
00090   massVec[7] = massVec[3];
00091   massVec[8] = 0.;
00092   if (Z > 1.0) massVec[8] = targetNucleus.AtomicMass(A,Z-1.0);
00093     
00094   G4FastVector<G4ReactionProduct,4> vec;  // vec will contain the secondary particles
00095   G4int vecLen = 0;
00096   vec.Initialize( 0 );
00097     
00098   theReactionDynamics.NuclearReaction(vec, vecLen, originalIncident,
00099                                       targetNucleus, theAtomicMass, massVec);
00100 
00101   G4double p = vec[0]->GetMomentum().mag();
00102   theParticleChange.SetMomentumChange( vec[0]->GetMomentum() * (1.0/p)  );
00103   theParticleChange.SetEnergyChange( vec[0]->GetKineticEnergy() );
00104   delete vec[0];
00105 
00106   if (vecLen <= 1) 
00107     {
00108       theParticleChange.SetStatusChange(isAlive);
00109       theParticleChange.SetEnergyChange(aTrack.GetKineticEnergy());
00110       theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
00111       if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
00112       return &theParticleChange;      
00113     }
00114 
00115   G4DynamicParticle* pd;
00116   for (G4int i=1; i<vecLen; ++i) {
00117     pd = new G4DynamicParticle();
00118     pd->SetDefinition( vec[i]->GetDefinition() );
00119     pd->SetMomentum( vec[i]->GetMomentum() );
00120     theParticleChange.AddSecondary( pd );
00121     delete vec[i];
00122   }
00123 
00124   if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus); 
00125   return &theParticleChange;
00126 }

void G4LEDeuteronInelastic::ModelDescription ( std::ostream &  outFile  )  const [virtual]

Reimplemented from G4HadronicInteraction.

Definition at line 36 of file G4LEDeuteronInelastic.cc.

00037 {
00038   outFile << "G4LEDeuteronInelastic is one of the Low Energy Parameterized\n"
00039           << "(LEP) models used to implement inelastic deuteron scattering\n"
00040           << "from nuclei.  It is a re-engineered version of the GHEISHA\n"
00041           << "code of H. Fesefeldt.  It divides the initial collision\n"
00042           << "products into backward- and forward-going clusters which are\n"
00043           << "then decayed into final state hadrons.  The model does not\n"
00044           << "conserve energy on an event-by-event basis.  It may be\n"
00045           << "applied to deuterons with initial energies between 0 and 10\n"
00046           << "TeV.\n";
00047 }


The documentation for this class was generated from the following files:
Generated on Mon May 27 17:52:22 2013 for Geant4 by  doxygen 1.4.7