G4HEKaonZeroInelastic Class Reference

#include <G4HEKaonZeroInelastic.hh>

Inheritance diagram for G4HEKaonZeroInelastic:

G4HEInelastic G4HadronicInteraction

Public Member Functions

 G4HEKaonZeroInelastic ()
 ~G4HEKaonZeroInelastic ()
virtual void ModelDescription (std::ostream &) const
G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
G4int GetNumberOfSecondaries ()
void FirstIntInCasKaonZero (G4bool &inElastic, const G4double availableEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, const G4double atomicWeight)

Data Fields

G4int vecLength

Detailed Description

Definition at line 52 of file G4HEKaonZeroInelastic.hh.


Constructor & Destructor Documentation

G4HEKaonZeroInelastic::G4HEKaonZeroInelastic (  )  [inline]

Definition at line 55 of file G4HEKaonZeroInelastic.hh.

References G4cout, G4endl, G4HEInelastic::MAXPART, G4HadronicInteraction::theMaxEnergy, G4HadronicInteraction::theMinEnergy, vecLength, and G4HEInelastic::verboseLevel.

00055                             : G4HEInelastic("G4HEKaonZeroInelastic")
00056     {
00057       vecLength = 0;
00058       theMinEnergy = 20*CLHEP::GeV;
00059       theMaxEnergy = 10*CLHEP::TeV;
00060       MAXPART      = 2048;
00061       verboseLevel = 0; 
00062       G4cout << "WARNING: model G4HEKaonZeroInelastic is being deprecated and will\n"
00063              << "disappear in Geant4 version 10.0"  << G4endl;  
00064     }

G4HEKaonZeroInelastic::~G4HEKaonZeroInelastic (  )  [inline]

Definition at line 66 of file G4HEKaonZeroInelastic.hh.

00066 {};


Member Function Documentation

G4HadFinalState * G4HEKaonZeroInelastic::ApplyYourself ( const G4HadProjectile aTrack,
G4Nucleus targetNucleus 
) [virtual]

Implements G4HadronicInteraction.

Definition at line 57 of file G4HEKaonZeroInelastic.cc.

References G4HEInelastic::ElasticScattering(), G4HEInelastic::FillParticleChange(), FirstIntInCasKaonZero(), G4cout, G4endl, G4UniformRand, G4Nucleus::GetA_asInt(), G4HEVector::getCode(), G4HEVector::getEnergy(), G4HEVector::getMass(), G4HEVector::getName(), G4Nucleus::GetZ_asInt(), G4HEInelastic::HighEnergyCascading(), G4HEInelastic::HighEnergyClusterProduction(), G4HEInelastic::MAXPART, G4HEInelastic::MediumEnergyCascading(), G4HEInelastic::MediumEnergyClusterProduction(), G4HEInelastic::NuclearExcitation(), G4HEInelastic::NuclearInelasticity(), G4HEInelastic::QuasiElasticScattering(), G4HEVector::setDefinition(), G4HadFinalState::SetStatusChange(), stopAndKill, G4HEInelastic::StrangeParticlePairProduction(), G4HadronicInteraction::theParticleChange, vecLength, and G4HEInelastic::verboseLevel.

00059 {
00060   G4HEVector* pv = new G4HEVector[MAXPART];
00061   const G4HadProjectile* aParticle = &aTrack;
00062   const G4double A = targetNucleus.GetA_asInt();
00063   const G4double Z = targetNucleus.GetZ_asInt();
00064   G4HEVector incidentParticle(aParticle);
00065      
00066   G4double atomicNumber = Z;
00067   G4double atomicWeight = A;
00068 
00069   G4int incidentCode = incidentParticle.getCode();
00070   G4double incidentMass = incidentParticle.getMass();
00071   G4double incidentTotalEnergy = incidentParticle.getEnergy();
00072 
00073   // G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
00074   // DHW 19 May 2011: variable set but not used
00075 
00076   G4double incidentKineticEnergy = incidentTotalEnergy - incidentMass;
00077 
00078   if (incidentKineticEnergy < 1.)
00079     G4cout << "GHEKaonZeroInelastic: incident energy < 1 GeV" << G4endl;;
00080 
00081   if (verboseLevel > 1) {
00082     G4cout << "G4HEKaonZeroInelastic::ApplyYourself" << G4endl;
00083     G4cout << "incident particle " << incidentParticle.getName()
00084            << "mass "              << incidentMass
00085            << "kinetic energy "    << incidentKineticEnergy
00086            << G4endl;
00087     G4cout << "target material with (A,Z) = (" 
00088            << atomicWeight << "," << atomicNumber << ")" << G4endl;
00089   }
00090     
00091   G4double inelasticity = NuclearInelasticity(incidentKineticEnergy, 
00092                                               atomicWeight, atomicNumber);
00093   if (verboseLevel > 1)
00094     G4cout << "nuclear inelasticity = " << inelasticity << G4endl;
00095     
00096   incidentKineticEnergy -= inelasticity;
00097     
00098   G4double excitationEnergyGNP = 0.;
00099   G4double excitationEnergyDTA = 0.; 
00100 
00101   G4double excitation = NuclearExcitation(incidentKineticEnergy,
00102                                           atomicWeight, atomicNumber,
00103                                           excitationEnergyGNP,
00104                                           excitationEnergyDTA);
00105   if (verboseLevel > 1)
00106     G4cout << "nuclear excitation = " << excitation << excitationEnergyGNP 
00107            << excitationEnergyDTA << G4endl;             
00108 
00109   incidentKineticEnergy -= excitation;
00110   incidentTotalEnergy = incidentKineticEnergy + incidentMass;
00111   // incidentTotalMomentum = std::sqrt( (incidentTotalEnergy-incidentMass)
00112   //                                   *(incidentTotalEnergy+incidentMass));
00113   // DHW 19 May 2011: variable set but not used
00114 
00115   G4HEVector targetParticle;
00116   if (G4UniformRand() < atomicNumber/atomicWeight) {
00117     targetParticle.setDefinition("Proton");
00118   } else { 
00119     targetParticle.setDefinition("Neutron");
00120   }
00121 
00122   G4double targetMass = targetParticle.getMass();
00123   G4double centerOfMassEnergy = std::sqrt(incidentMass*incidentMass
00124                                         + targetMass*targetMass
00125                                         + 2.0*targetMass*incidentTotalEnergy);
00126   G4double availableEnergy = centerOfMassEnergy - targetMass - incidentMass;
00127 
00128   G4bool inElastic = true;
00129   vecLength = 0;
00130 
00131   if (verboseLevel > 1)
00132     G4cout << "ApplyYourself: CallFirstIntInCascade for particle "
00133            << incidentCode << G4endl;
00134 
00135   G4bool successful = false; 
00136     
00137   FirstIntInCasKaonZero(inElastic, availableEnergy, pv, vecLength,
00138                         incidentParticle, targetParticle, atomicWeight);
00139 
00140   if (verboseLevel > 1)
00141     G4cout << "ApplyYourself::StrangeParticlePairProduction" << G4endl;
00142 
00143   if ((vecLength > 0) && (availableEnergy > 1.)) 
00144     StrangeParticlePairProduction(availableEnergy, centerOfMassEnergy,
00145                                   pv, vecLength,
00146                                   incidentParticle, targetParticle);
00147 
00148   HighEnergyCascading(successful, pv, vecLength,
00149                       excitationEnergyGNP, excitationEnergyDTA,
00150                       incidentParticle, targetParticle,
00151                       atomicWeight, atomicNumber);
00152   if (!successful)
00153     HighEnergyClusterProduction(successful, pv, vecLength,
00154                                 excitationEnergyGNP, excitationEnergyDTA,
00155                                 incidentParticle, targetParticle,
00156                                 atomicWeight, atomicNumber);
00157   if (!successful) 
00158     MediumEnergyCascading(successful, pv, vecLength, 
00159                           excitationEnergyGNP, excitationEnergyDTA, 
00160                           incidentParticle, targetParticle,
00161                           atomicWeight, atomicNumber);
00162 
00163   if (!successful)
00164     MediumEnergyClusterProduction(successful, pv, vecLength,
00165                                   excitationEnergyGNP, excitationEnergyDTA,       
00166                                   incidentParticle, targetParticle,
00167                                   atomicWeight, atomicNumber);
00168   if (!successful)
00169     QuasiElasticScattering(successful, pv, vecLength,
00170                            excitationEnergyGNP, excitationEnergyDTA,
00171                            incidentParticle, targetParticle, 
00172                            atomicWeight, atomicNumber);
00173   if (!successful)
00174     ElasticScattering(successful, pv, vecLength,
00175                       incidentParticle,    
00176                       atomicWeight, atomicNumber);
00177 
00178   if (!successful) 
00179     G4cout << "GHEInelasticInteraction::ApplyYourself fails to produce final state particles"
00180            << G4endl;
00181 
00182   FillParticleChange(pv,  vecLength);
00183 
00184   delete [] pv;
00185   theParticleChange.SetStatusChange(stopAndKill);
00186   return &theParticleChange;
00187 }

void G4HEKaonZeroInelastic::FirstIntInCasKaonZero ( G4bool inElastic,
const G4double  availableEnergy,
G4HEVector  pv[],
G4int vecLen,
const G4HEVector incidentParticle,
const G4HEVector targetParticle,
const G4double  atomicWeight 
)

Definition at line 191 of file G4HEKaonZeroInelastic.cc.

References G4cout, G4endl, G4UniformRand, G4HEVector::getCode(), G4HEVector::getMass(), G4HEVector::getName(), G4HEVector::getTotalMomentum(), G4HEInelastic::KaonPlus, CLHEP::detail::n, G4HEInelastic::Neutron, neutronCode, G4INCL::Math::pi, G4HEInelastic::PionMinus, G4HEInelastic::PionPlus, G4HEInelastic::PionZero, G4HEInelastic::pmltpc(), G4HEInelastic::Proton, sqr(), and G4HEInelastic::verboseLevel.

Referenced by ApplyYourself().

00206 {
00207   static const G4double expxu = 82.;     // upper bound for arg. of exp
00208   static const G4double expxl = -expxu;  // lower bound for arg. of exp
00209 
00210   static const G4double protb = 0.7;
00211   static const G4double neutb = 0.7;
00212   static const G4double c = 1.25;
00213 
00214   static const G4int numMul = 1200;
00215   static const G4int numSec = 60;
00216 
00217   G4int neutronCode = Neutron.getCode();
00218   G4int protonCode  = Proton.getCode();
00219 
00220   G4int targetCode = targetParticle.getCode();
00221   G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
00222 
00223   static G4bool first = true;
00224   static G4double protmul[numMul], protnorm[numSec];  // proton constants
00225   static G4double neutmul[numMul], neutnorm[numSec];  // neutron constants
00226 
00227   // misc. local variables
00228   // npos = number of pi+,  nneg = number of pi-,  nzero = number of pi0
00229 
00230   G4int i, counter, nt, npos, nneg, nzero;
00231 
00232    if( first ) 
00233      {     // compute normalization constants, this will only be done once
00234        first = false;
00235        for( i=0; i<numMul; i++ )protmul[i]  = 0.0;
00236        for( i=0; i<numSec; i++ )protnorm[i] = 0.0;
00237        counter = -1;
00238        for( npos=0; npos<(numSec/3); npos++ ) 
00239           {
00240             for( nneg=std::max(0,npos-1); nneg<=(npos+1); nneg++ ) 
00241                {
00242                  for( nzero=0; nzero<numSec/3; nzero++ ) 
00243                     {
00244                       if( ++counter < numMul ) 
00245                         {
00246                           nt = npos+nneg+nzero;
00247                           if( (nt>0) && (nt<=numSec) ) 
00248                             {
00249                               protmul[counter] =
00250                                     pmltpc(npos,nneg,nzero,nt,protb,c) ;
00251                               protnorm[nt-1] += protmul[counter];
00252                             }
00253                         }
00254                     }
00255                }
00256           }
00257        for( i=0; i<numMul; i++ )neutmul[i]  = 0.0;
00258        for( i=0; i<numSec; i++ )neutnorm[i] = 0.0;
00259        counter = -1;
00260        for( npos=0; npos<numSec/3; npos++ ) 
00261           {
00262             for( nneg=npos; nneg<=(npos+2); nneg++ ) 
00263                {
00264                  for( nzero=0; nzero<numSec/3; nzero++ ) 
00265                     {
00266                       if( ++counter < numMul ) 
00267                         {
00268                           nt = npos+nneg+nzero;
00269                           if( (nt>0) && (nt<=numSec) ) 
00270                             {
00271                                neutmul[counter] =
00272                                       pmltpc(npos,nneg,nzero,nt,neutb,c);
00273                                neutnorm[nt-1] += neutmul[counter];
00274                             }
00275                         }
00276                     }
00277                }
00278           }
00279        for( i=0; i<numSec; i++ ) 
00280           {
00281             if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
00282             if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
00283           }
00284      }                                          // end of initialization
00285 
00286          
00287                                               // initialize the first two places
00288                                               // the same as beam and target                                    
00289    pv[0] = incidentParticle;
00290    pv[1] = targetParticle;
00291    vecLen = 2;
00292 
00293    if( !inElastic ) 
00294      {                                     // quasi-elastic scattering, no pions produced
00295        if( targetCode == protonCode ) 
00296          {
00297            G4double cech[] = {0.33,0.27,0.29,0.31,0.27,0.18,0.13,0.10,0.09,0.07};
00298            G4int iplab = G4int( std::min( 9.0, incidentTotalMomentum*5. ) );
00299            if( G4UniformRand() < cech[iplab]/std::pow(atomicWeight,0.42) ) 
00300              {                             // charge exchange  K+ n -> K0 p
00301                pv[0] = KaonPlus;
00302                pv[1] = Neutron;
00303              }
00304          }
00305        return;
00306      }
00307    else if (availableEnergy <= PionPlus.getMass())
00308        return;
00309 
00310                                             //  inelastic scattering
00311 
00312    npos = 0, nneg = 0, nzero = 0;
00313    G4double eab = availableEnergy;
00314    G4int ieab = G4int( eab*5.0 );
00315    
00316    G4double supp[] = {0., 0.4, 0.55, 0.65, 0.75, 0.82, 0.86, 0.90, 0.94, 0.98};
00317    if( (ieab <= 9) && (G4UniformRand() >=  supp[ieab]) ) 
00318      {
00319 //                                            suppress high multiplicity events at low momentum
00320 //                                            only one additional pion will be produced
00321        G4double w0, wp, wm, wt, ran;
00322        if( targetCode == neutronCode )                    // target is a neutron 
00323          {
00324            w0 = - sqr(1.+protb)/(2.*c*c);
00325            w0 = std::exp(w0);
00326            wm = - sqr(-1.+protb)/(2.*c*c);
00327            wm = std::exp(wm);
00328            w0 = w0/2.;
00329            wm = wm*1.5;
00330            if( G4UniformRand() < w0/(w0+wm) )              { npos = 0; nneg = 0; nzero = 1; }
00331            else 
00332              { npos = 0; nneg = 1; nzero = 0; }       
00333          } 
00334        else 
00335          {                                               // target is a proton
00336            w0 = -sqr(1.+neutb)/(2.*c*c);
00337            wp = w0 = std::exp(w0);
00338            wm = -sqr(-1.+neutb)/(2.*c*c);
00339            wm = std::exp(wm);
00340            wt = w0+wp+wm;
00341            wp = w0+wp;
00342            ran = G4UniformRand();
00343            if( ran < w0/wt)
00344              { npos = 0; nneg = 0; nzero = 1; }       
00345            else if( ran < wp/wt)
00346              { npos = 1; nneg = 0; nzero = 0; }       
00347            else
00348              { npos = 0; nneg = 1; nzero = 0; }       
00349          }
00350      }
00351    else
00352      {
00353 //                    number of total particles vs. centre of mass Energy - 2*proton mass
00354    
00355        G4double aleab = std::log(availableEnergy);
00356        G4double n     = 3.62567+aleab*(0.665843+aleab*(0.336514
00357                     + aleab*(0.117712+0.0136912*aleab))) - 2.0;
00358    
00359 //                    normalization constant for kno-distribution.
00360 //                    calculate first the sum of all constants, check for numerical problems.   
00361        G4double test, dum, anpn = 0.0;
00362 
00363        for (nt=1; nt<=numSec; nt++) {
00364          test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
00365          dum = pi*nt/(2.0*n*n);
00366          if (std::fabs(dum) < 1.0) { 
00367            if( test >= 1.0e-10 )anpn += dum*test;
00368          } else { 
00369            anpn += dum*test;
00370          }
00371        }
00372    
00373        G4double ran = G4UniformRand();
00374        G4double excs = 0.0;
00375        if( targetCode == protonCode ) 
00376          {
00377            counter = -1;
00378            for( npos=0; npos<numSec/3; npos++ ) 
00379               {
00380                 for( nneg=std::max(0,npos-1); nneg<=(npos+1); nneg++ ) 
00381                    {
00382                      for (nzero=0; nzero<numSec/3; nzero++) {
00383                        if (++counter < numMul) {
00384                          nt = npos+nneg+nzero;
00385                          if ( (nt>0) && (nt<=numSec) ) {
00386                            test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
00387                            dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
00388                            if (std::fabs(dum) < 1.0) { 
00389                              if( test >= 1.0e-10 )excs += dum*test;
00390                            } else { 
00391                              excs += dum*test;
00392                            }
00393                            if (ran < excs) goto outOfLoop;      //----------------------->
00394                          }   
00395                        }    
00396                      }     
00397                    }                                                                                  
00398               }
00399        
00400                                      // 3 previous loops continued to the end
00401            inElastic = false;                 // quasi-elastic scattering   
00402            return;
00403          }
00404        else   
00405          {                                         // target must be a neutron
00406            counter = -1;
00407            for( npos=0; npos<numSec/3; npos++ ) 
00408               {
00409                 for( nneg=npos; nneg<=(npos+2); nneg++ ) 
00410                    {
00411                      for (nzero=0; nzero<numSec/3; nzero++) {
00412                        if (++counter < numMul) {
00413                          nt = npos+nneg+nzero;
00414                          if ( (nt>=1) && (nt<=numSec) ) {
00415                            test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
00416                            dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
00417                            if (std::fabs(dum) < 1.0) { 
00418                              if( test >= 1.0e-10 )excs += dum*test;
00419                            } else { 
00420                              excs += dum*test;
00421                            }
00422                            if (ran < excs) goto outOfLoop;       // -------------------------->
00423                          }
00424                        }
00425                      }
00426                    }
00427               }
00428                                                   // 3 previous loops continued to the end
00429            inElastic = false;                     // quasi-elastic scattering.
00430            return;
00431          }
00432      } 
00433    outOfLoop:           //  <-----------------------------------------------   
00434     
00435    if( targetCode == neutronCode)
00436      {
00437        if( npos == nneg)
00438          {
00439          }
00440        else if (npos == (nneg-1))
00441          {
00442            if( G4UniformRand() < 0.5)
00443              {
00444                pv[0] = KaonPlus;
00445              }
00446            else
00447              {
00448                pv[1] = Proton;
00449              }
00450          }
00451        else      
00452          {
00453            pv[0] = KaonPlus;
00454            pv[1] = Proton;
00455          } 
00456      }  
00457    else
00458      {
00459        if( npos == nneg )
00460          {
00461            if( G4UniformRand() < 0.25)
00462              {
00463                pv[0] = KaonPlus;
00464                pv[1] = Neutron;
00465              }
00466            else
00467              {
00468              }
00469          } 
00470        else if ( npos == (nneg+1))
00471          {
00472            pv[1] = Neutron;
00473          }
00474        else
00475          {
00476            pv[0] = KaonPlus;
00477          }
00478      }      
00479 
00480 
00481    nt = npos + nneg + nzero;
00482    while ( nt > 0)
00483        {
00484          G4double ran = G4UniformRand();
00485          if ( ran < (G4double)npos/nt)
00486             { 
00487               if( npos > 0 ) 
00488                 { pv[vecLen++] = PionPlus;
00489                   npos--;
00490                 }
00491             }
00492          else if ( ran < (G4double)(npos+nneg)/nt)
00493             {   
00494               if( nneg > 0 )
00495                 { 
00496                   pv[vecLen++] = PionMinus;
00497                   nneg--;
00498                 }
00499             }
00500          else
00501             {
00502               if( nzero > 0 )
00503                 { 
00504                   pv[vecLen++] = PionZero;
00505                   nzero--;
00506                 }
00507             }
00508          nt = npos + nneg + nzero;
00509        } 
00510    if (verboseLevel > 1)
00511       {
00512         G4cout << "Particles produced: " ;
00513         G4cout << pv[0].getName() << " " ;
00514         G4cout << pv[1].getName() << " " ;
00515         for (i=2; i < vecLen; i++)   
00516             { 
00517               G4cout << pv[i].getName() << " " ;
00518             }
00519          G4cout << G4endl;
00520       }
00521    return; }

G4int G4HEKaonZeroInelastic::GetNumberOfSecondaries (  )  [inline]

Definition at line 75 of file G4HEKaonZeroInelastic.hh.

References vecLength.

00075 {return vecLength;}

void G4HEKaonZeroInelastic::ModelDescription ( std::ostream &   )  const [virtual]

Reimplemented from G4HadronicInteraction.

Definition at line 42 of file G4HEKaonZeroInelastic.cc.

00043 {
00044   outFile << "G4HEKaonZeroInelastic is one of the High Energy\n"
00045           << "Parameterized (HEP) models used to implement inelastic\n"
00046           << "K0 scattering from nuclei.  It is a re-engineered\n"
00047           << "version of the GHEISHA code of H. Fesefeldt.  It divides the\n"
00048           << "initial collision products into backward- and forward-going\n"
00049           << "clusters which are then decayed into final state hadrons.\n"
00050           << "The model does not conserve energy on an event-by-event\n"
00051           << "basis.  It may be applied to K0 with initial energies\n"
00052           << "above 20 GeV.\n";
00053 }


Field Documentation

G4int G4HEKaonZeroInelastic::vecLength

Definition at line 70 of file G4HEKaonZeroInelastic.hh.

Referenced by ApplyYourself(), G4HEKaonZeroInelastic(), and GetNumberOfSecondaries().


The documentation for this class was generated from the following files:
Generated on Mon May 27 17:52:11 2013 for Geant4 by  doxygen 1.4.7