G4ComponentGGHadronNucleusXsc Class Reference

#include <G4ComponentGGHadronNucleusXsc.hh>

Inheritance diagram for G4ComponentGGHadronNucleusXsc:

G4VComponentCrossSection

Public Member Functions

 G4ComponentGGHadronNucleusXsc ()
virtual ~G4ComponentGGHadronNucleusXsc ()
virtual G4double GetTotalIsotopeCrossSection (const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A)
virtual G4double GetTotalElementCrossSection (const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4double A)
virtual G4double GetInelasticIsotopeCrossSection (const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A)
virtual G4double GetInelasticElementCrossSection (const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4double A)
virtual G4double GetElasticElementCrossSection (const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4double A)
virtual G4double GetElasticIsotopeCrossSection (const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A)
virtual G4double ComputeQuasiElasticRatio (const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A)
G4bool IsIsoApplicable (const G4DynamicParticle *aDP, G4int Z, G4int A, const G4Element *elm=0, const G4Material *mat=0)
G4double GetIsoCrossSection (const G4DynamicParticle *, G4int Z, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
G4double GetRatioSD (const G4DynamicParticle *, G4int At, G4int Zt)
G4double GetRatioQE (const G4DynamicParticle *, G4int At, G4int Zt)
G4double GetHadronNucleonXsc (const G4DynamicParticle *, const G4Element *)
G4double GetHadronNucleonXsc (const G4DynamicParticle *, G4int At, G4int Zt)
G4double GetHadronNucleonXscPDG (const G4DynamicParticle *, const G4Element *)
G4double GetHadronNucleonXscPDG (const G4DynamicParticle *, G4int At, G4int Zt)
G4double GetHadronNucleonXscNS (const G4DynamicParticle *, const G4Element *)
G4double GetHadronNucleonXscNS (const G4DynamicParticle *, G4int At, G4int Zt)
G4double GetKaonNucleonXscVector (const G4DynamicParticle *, G4int At, G4int Zt)
G4double GetHNinelasticXsc (const G4DynamicParticle *, const G4Element *)
G4double GetHNinelasticXsc (const G4DynamicParticle *, G4int At, G4int Zt)
G4double GetHNinelasticXscVU (const G4DynamicParticle *, G4int At, G4int Zt)
G4double CalculateEcmValue (const G4double, const G4double, const G4double)
G4double CalcMandelstamS (const G4double, const G4double, const G4double)
G4double GetNucleusRadius (const G4DynamicParticle *, const G4Element *)
G4double GetNucleusRadius (G4int At)
virtual void CrossSectionDescription (std::ostream &) const
G4double GetElasticGlauberGribov (const G4DynamicParticle *, G4int Z, G4int A)
G4double GetInelasticGlauberGribov (const G4DynamicParticle *, G4int Z, G4int A)
G4double GetTotalGlauberGribovXsc ()
G4double GetElasticGlauberGribovXsc ()
G4double GetInelasticGlauberGribovXsc ()
G4double GetProductionGlauberGribovXsc ()
G4double GetDiffractionGlauberGribovXsc ()
G4double GetRadiusConst ()
G4double GetParticleBarCorTot (const G4ParticleDefinition *theParticle, G4int Z)
G4double GetParticleBarCorIn (const G4ParticleDefinition *theParticle, G4int Z)
void SetEnergyLowerLimit (G4double E)

Detailed Description

Definition at line 51 of file G4ComponentGGHadronNucleusXsc.hh.


Constructor & Destructor Documentation

G4ComponentGGHadronNucleusXsc::G4ComponentGGHadronNucleusXsc (  ) 

Definition at line 44 of file G4ComponentGGHadronNucleusXsc.cc.

References G4Alpha::Alpha(), G4AntiLambda::AntiLambda(), G4AntiNeutron::AntiNeutron(), G4AntiOmegaMinus::AntiOmegaMinus(), G4AntiProton::AntiProton(), G4AntiSigmaMinus::AntiSigmaMinus(), G4AntiSigmaPlus::AntiSigmaPlus(), G4AntiSigmaZero::AntiSigmaZero(), G4AntiXiMinus::AntiXiMinus(), G4AntiXiZero::AntiXiZero(), G4Deuteron::Deuteron(), G4Gamma::Gamma(), G4He3::He3(), G4KaonMinus::KaonMinus(), G4KaonPlus::KaonPlus(), G4KaonZeroLong::KaonZeroLong(), G4KaonZeroShort::KaonZeroShort(), G4Lambda::Lambda(), G4Neutron::Neutron(), G4OmegaMinus::OmegaMinus(), G4PionMinus::PionMinus(), G4PionPlus::PionPlus(), G4PionZero::PionZero(), G4Proton::Proton(), G4SigmaMinus::SigmaMinus(), G4SigmaPlus::SigmaPlus(), G4SigmaZero::SigmaZero(), G4Triton::Triton(), G4XiMinus::XiMinus(), and G4XiZero::XiZero().

00045  : G4VComponentCrossSection("Glauber-Gribov"),
00046    fUpperLimit(100000*GeV), fLowerLimit(10.*MeV),// fLowerLimit(3*GeV),
00047    fRadiusConst(1.08*fermi),  // 1.1, 1.3 ?
00048    fTotalXsc(0.0), fElasticXsc(0.0), fInelasticXsc(0.0), fProductionXsc(0.0),
00049    fDiffractionXsc(0.0), fHadronNucleonXsc(0.0)
00050 {
00051   theGamma    = G4Gamma::Gamma();
00052   theProton   = G4Proton::Proton();
00053   theNeutron  = G4Neutron::Neutron();
00054   theAProton  = G4AntiProton::AntiProton();
00055   theANeutron = G4AntiNeutron::AntiNeutron();
00056   thePiPlus   = G4PionPlus::PionPlus();
00057   thePiMinus  = G4PionMinus::PionMinus();
00058   thePiZero   = G4PionZero::PionZero();
00059   theKPlus    = G4KaonPlus::KaonPlus();
00060   theKMinus   = G4KaonMinus::KaonMinus();
00061   theK0S      = G4KaonZeroShort::KaonZeroShort();
00062   theK0L      = G4KaonZeroLong::KaonZeroLong();
00063   theL        = G4Lambda::Lambda();
00064   theAntiL    = G4AntiLambda::AntiLambda();
00065   theSPlus    = G4SigmaPlus::SigmaPlus();
00066   theASPlus   = G4AntiSigmaPlus::AntiSigmaPlus();
00067   theSMinus   = G4SigmaMinus::SigmaMinus();
00068   theASMinus  = G4AntiSigmaMinus::AntiSigmaMinus();
00069   theS0       = G4SigmaZero::SigmaZero();
00070   theAS0      = G4AntiSigmaZero::AntiSigmaZero();
00071   theXiMinus  = G4XiMinus::XiMinus();
00072   theXi0      = G4XiZero::XiZero();
00073   theAXiMinus = G4AntiXiMinus::AntiXiMinus();
00074   theAXi0     = G4AntiXiZero::AntiXiZero();
00075   theOmega    = G4OmegaMinus::OmegaMinus();
00076   theAOmega   = G4AntiOmegaMinus::AntiOmegaMinus();
00077   theD        = G4Deuteron::Deuteron();
00078   theT        = G4Triton::Triton();
00079   theA        = G4Alpha::Alpha();
00080   theHe3      = G4He3::He3();
00081 
00082   hnXsc = new G4HadronNucleonXsc();
00083 }

G4ComponentGGHadronNucleusXsc::~G4ComponentGGHadronNucleusXsc (  )  [virtual]

Definition at line 89 of file G4ComponentGGHadronNucleusXsc.cc.

00090 {
00091   if (hnXsc) delete hnXsc;
00092 }


Member Function Documentation

G4double G4ComponentGGHadronNucleusXsc::CalcMandelstamS ( const   G4double,
const   G4double,
const   G4double 
)

Definition at line 1428 of file G4ComponentGGHadronNucleusXsc.cc.

Referenced by GetHadronNucleonXsc(), GetHadronNucleonXscNS(), and GetHadronNucleonXscPDG().

01431 {
01432   G4double Elab = std::sqrt ( mp * mp + Plab * Plab );
01433   G4double sMand  = mp*mp + mt*mt + 2*Elab*mt ;
01434 
01435   return sMand;
01436 }

G4double G4ComponentGGHadronNucleusXsc::CalculateEcmValue ( const   G4double,
const   G4double,
const   G4double 
)

Definition at line 1412 of file G4ComponentGGHadronNucleusXsc.cc.

01415 {
01416   G4double Elab = std::sqrt ( mp * mp + Plab * Plab );
01417   G4double Ecm  = std::sqrt ( mp * mp + mt * mt + 2 * Elab * mt );
01418   // G4double Pcm  = Plab * mt / Ecm;
01419   // G4double KEcm = std::sqrt ( Pcm * Pcm + mp * mp ) - mp;
01420 
01421   return Ecm ; // KEcm;
01422 }

G4double G4ComponentGGHadronNucleusXsc::ComputeQuasiElasticRatio ( const G4ParticleDefinition aParticle,
G4double  kinEnergy,
G4int  Z,
G4int  A 
) [virtual]

Reimplemented from G4VComponentCrossSection.

Definition at line 180 of file G4ComponentGGHadronNucleusXsc.cc.

References GetIsoCrossSection().

00183 {
00184   G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), 
00185                                                 kinEnergy);
00186   fTotalXsc = GetIsoCrossSection(aDP, Z, A);
00187   delete aDP;
00188   G4double ratio = 0.;
00189 
00190   if(fInelasticXsc > 0.)
00191   {
00192     ratio = (fInelasticXsc - fProductionXsc)/fInelasticXsc;
00193     if(ratio < 0.) ratio = 0.;
00194   }
00195   return ratio;
00196 }

void G4ComponentGGHadronNucleusXsc::CrossSectionDescription ( std::ostream &   )  const [virtual]

Definition at line 1442 of file G4ComponentGGHadronNucleusXsc.cc.

01443 {
01444   outFile << "G4ComponentGGHadronNucleusXsc calculates total, inelastic and\n"
01445           << "elastic cross sections for hadron-nucleus cross sections using\n"
01446           << "the Glauber model with Gribov corrections.  It is valid for all\n"
01447           << "targets except hydrogen, and for incident p, pbar, n, sigma-,\n"
01448           << "pi+, pi-, K+, K- and gammas with energies above 3 GeV.  This is\n"
01449           << "a cross section component which is to be used to build a cross\n"
01450           << "data set.\n";
01451 }

G4double G4ComponentGGHadronNucleusXsc::GetDiffractionGlauberGribovXsc (  )  [inline]

Definition at line 141 of file G4ComponentGGHadronNucleusXsc.hh.

00141 { return fDiffractionXsc; }; 

G4double G4ComponentGGHadronNucleusXsc::GetElasticElementCrossSection ( const G4ParticleDefinition aParticle,
G4double  kinEnergy,
G4int  Z,
G4double  A 
) [virtual]

Implements G4VComponentCrossSection.

Definition at line 152 of file G4ComponentGGHadronNucleusXsc.cc.

References GetIsoCrossSection().

00155 {
00156   G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), 
00157                                                 kinEnergy);
00158   fTotalXsc = GetIsoCrossSection(aDP, Z, G4int(A));
00159   delete aDP;
00160 
00161   return fElasticXsc;
00162 }

G4double G4ComponentGGHadronNucleusXsc::GetElasticGlauberGribov ( const G4DynamicParticle ,
G4int  Z,
G4int  A 
) [inline]

Definition at line 211 of file G4ComponentGGHadronNucleusXsc.hh.

References GetIsoCrossSection().

00213 {
00214   GetIsoCrossSection(dp, Z, A);
00215   return fElasticXsc;
00216 }

G4double G4ComponentGGHadronNucleusXsc::GetElasticGlauberGribovXsc (  )  [inline]

Definition at line 138 of file G4ComponentGGHadronNucleusXsc.hh.

00138 { return fElasticXsc;   }; 

G4double G4ComponentGGHadronNucleusXsc::GetElasticIsotopeCrossSection ( const G4ParticleDefinition aParticle,
G4double  kinEnergy,
G4int  Z,
G4int  A 
) [virtual]

Implements G4VComponentCrossSection.

Definition at line 166 of file G4ComponentGGHadronNucleusXsc.cc.

References GetIsoCrossSection().

00169 {
00170   G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), 
00171                                                 kinEnergy);
00172   fTotalXsc = GetIsoCrossSection(aDP, Z, A);
00173   delete aDP;
00174 
00175   return fElasticXsc;
00176 }

G4double G4ComponentGGHadronNucleusXsc::GetHadronNucleonXsc ( const G4DynamicParticle ,
G4int  At,
G4int  Zt 
)

Definition at line 460 of file G4ComponentGGHadronNucleusXsc.cc.

References CalcMandelstamS(), G4DynamicParticle::GetDefinition(), G4DynamicParticle::GetMass(), and G4DynamicParticle::GetMomentum().

00462 {
00463   G4double xsection;
00464 
00465   //G4double targ_mass = G4NucleiProperties::GetNuclearMass(At, Zt);
00466 
00467   G4double targ_mass = 0.939*GeV;  // ~mean neutron and proton ???
00468 
00469   G4double proj_mass     = aParticle->GetMass();
00470   G4double proj_momentum = aParticle->GetMomentum().mag();
00471   G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum );
00472 
00473   sMand /= GeV*GeV;  // in GeV for parametrisation
00474   proj_momentum /= GeV;
00475 
00476   const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
00477   
00478   G4double aa = At;
00479 
00480   if(theParticle == theGamma) 
00481   {
00482     xsection = aa*(0.0677*std::pow(sMand,0.0808) + 0.129*std::pow(sMand,-0.4525));
00483   } 
00484   else if(theParticle == theNeutron) // as proton ??? 
00485   {
00486     xsection = aa*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525));
00487   } 
00488   else if(theParticle == theProton) 
00489   {
00490     xsection = aa*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525));
00491     // xsection = At*( 49.51*std::pow(sMand,-0.097) + 0.314*std::log(sMand)*std::log(sMand) );
00492     // xsection = At*( 38.4 + 0.85*std::abs(std::pow(log(sMand),1.47)) );
00493   } 
00494   else if(theParticle == theAProton) 
00495   {
00496     xsection = aa*( 21.70*std::pow(sMand,0.0808) + 98.39*std::pow(sMand,-0.4525));
00497   } 
00498   else if(theParticle == thePiPlus) 
00499   {
00500     xsection = aa*(13.63*std::pow(sMand,0.0808) + 27.56*std::pow(sMand,-0.4525));
00501   } 
00502   else if(theParticle == thePiMinus) 
00503   {
00504     // xsection = At*( 55.2*std::pow(sMand,-0.255) + 0.346*std::log(sMand)*std::log(sMand) );
00505     xsection = aa*(13.63*std::pow(sMand,0.0808) + 36.02*std::pow(sMand,-0.4525));
00506   } 
00507   else if(theParticle == theKPlus) 
00508   {
00509     xsection = aa*(11.82*std::pow(sMand,0.0808) + 8.15*std::pow(sMand,-0.4525));
00510   } 
00511   else if(theParticle == theKMinus) 
00512   {
00513     xsection = aa*(11.82*std::pow(sMand,0.0808) + 26.36*std::pow(sMand,-0.4525));
00514   }
00515   else  // as proton ??? 
00516   {
00517     xsection = aa*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525));
00518   } 
00519   xsection *= millibarn;
00520   return xsection;
00521 }

G4double G4ComponentGGHadronNucleusXsc::GetHadronNucleonXsc ( const G4DynamicParticle ,
const G4Element  
)

Definition at line 443 of file G4ComponentGGHadronNucleusXsc.cc.

References G4lrint(), G4Element::GetN(), and G4Element::GetZ().

00445 {
00446   G4int At = G4lrint(anElement->GetN());  // number of nucleons 
00447   G4int Zt = G4lrint(anElement->GetZ());  // number of protons
00448 
00449   return GetHadronNucleonXsc(aParticle, At, Zt);
00450 }

G4double G4ComponentGGHadronNucleusXsc::GetHadronNucleonXscNS ( const G4DynamicParticle ,
G4int  At,
G4int  Zt 
)

Definition at line 682 of file G4ComponentGGHadronNucleusXsc.cc.

References CalcMandelstamS(), G4DynamicParticle::GetDefinition(), GetHadronNucleonXscPDG(), G4DynamicParticle::GetMass(), G4DynamicParticle::GetMomentum(), G4ParticleTable::GetParticleTable(), G4DynamicParticle::GetTotalEnergy(), G4InuclParticleNames::nn, and G4InuclParticleNames::s0.

00684 {
00685   G4double xsection(0);
00686   // G4double Delta;   DHW 19 May 2011: variable set but not used
00687   G4double A0, B0;
00688   G4double hpXscv(0);
00689   G4double hnXscv(0);
00690 
00691   G4int Nt = At-Zt;              // number of neutrons
00692   if (Nt < 0) Nt = 0;  
00693 
00694   G4double aa = At;
00695   G4double zz = Zt;
00696   G4double nn = Nt;
00697 
00698   G4double targ_mass = G4ParticleTable::GetParticleTable()->
00699   GetIonTable()->GetIonMass(Zt, At);
00700 
00701   targ_mass = 0.939*GeV;  // ~mean neutron and proton ???
00702 
00703   G4double proj_mass     = aParticle->GetMass();
00704   G4double proj_energy   = aParticle->GetTotalEnergy(); 
00705   G4double proj_momentum = aParticle->GetMomentum().mag();
00706 
00707   G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum );
00708 
00709   sMand         /= GeV*GeV;  // in GeV for parametrisation
00710   proj_momentum /= GeV;
00711   proj_energy   /= GeV;
00712   proj_mass     /= GeV;
00713 
00714   // General PDG fit constants
00715 
00716   G4double s0   = 5.38*5.38; // in Gev^2
00717   G4double eta1 = 0.458;
00718   G4double eta2 = 0.458;
00719   G4double B    = 0.308;
00720 
00721 
00722   const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
00723   
00724 
00725   if(theParticle == theNeutron) 
00726   {
00727     if( proj_momentum >= 373.)
00728     {
00729       return GetHadronNucleonXscPDG(aParticle,At,Zt);
00730     }
00731     else if( proj_momentum >= 10.)
00732     // if( proj_momentum >= 2.)
00733     {
00734       //  Delta = 1.;  // DHW 19 May 2011: variable set but not used
00735       // if( proj_energy < 40. ) Delta = 0.916+0.0021*proj_energy;
00736 
00737       if(proj_momentum >= 10.)
00738       {
00739         B0 = 7.5;
00740         A0 = 100. - B0*std::log(3.0e7);
00741 
00742         xsection = A0 + B0*std::log(proj_energy) - 11
00743                   + 103*std::pow(2*0.93827*proj_energy + proj_mass*proj_mass+
00744                      0.93827*0.93827,-0.165);        //  mb
00745       }
00746       xsection *= zz + nn;
00747     }
00748     else
00749     {
00750       // nn to be pp
00751 
00752       if( proj_momentum < 0.73 )
00753       {
00754         hnXscv = 23 + 50*( std::pow( std::log(0.73/proj_momentum), 3.5 ) );
00755       }
00756       else if( proj_momentum < 1.05  )
00757       {
00758        hnXscv = 23 + 40*(std::log(proj_momentum/0.73))*
00759                          (std::log(proj_momentum/0.73));
00760       }
00761       else  // if( proj_momentum < 10.  )
00762       {
00763          hnXscv = 39.0+
00764               75*(proj_momentum - 1.2)/(std::pow(proj_momentum,3.0) + 0.15);
00765       }
00766       // pn to be np
00767 
00768       if( proj_momentum < 0.8 )
00769       {
00770         hpXscv = 33+30*std::pow(std::log(proj_momentum/1.3),4.0);
00771       }      
00772       else if( proj_momentum < 1.4 )
00773       {
00774         hpXscv = 33+30*std::pow(std::log(proj_momentum/0.95),2.0);
00775       }
00776       else    // if( proj_momentum < 10.  )
00777       {
00778         hpXscv = 33.3+
00779               20.8*(std::pow(proj_momentum,2.0)-1.35)/
00780                  (std::pow(proj_momentum,2.50)+0.95);
00781       }
00782       xsection = hpXscv*zz + hnXscv*nn;
00783     }
00784   } 
00785   else if(theParticle == theProton) 
00786   {
00787     if( proj_momentum >= 373.)
00788     {
00789       return GetHadronNucleonXscPDG(aParticle,At,Zt);
00790     }
00791     else if( proj_momentum >= 10.)
00792     // if( proj_momentum >= 2.)
00793     {
00794       // Delta = 1.;  DHW 19 May 2011: variable set but not used
00795       // if( proj_energy < 40. ) Delta = 0.916+0.0021*proj_energy;
00796 
00797       if(proj_momentum >= 10.)
00798       {
00799         B0 = 7.5;
00800         A0 = 100. - B0*std::log(3.0e7);
00801 
00802         xsection = A0 + B0*std::log(proj_energy) - 11
00803                   + 103*std::pow(2*0.93827*proj_energy + proj_mass*proj_mass+
00804                      0.93827*0.93827,-0.165);        //  mb
00805       }
00806       xsection *= zz + nn;
00807     }
00808     else
00809     {
00810       // pp
00811 
00812       if( proj_momentum < 0.73 )
00813       {
00814         hpXscv = 23 + 50*( std::pow( std::log(0.73/proj_momentum), 3.5 ) );
00815       }
00816       else if( proj_momentum < 1.05  )
00817       {
00818        hpXscv = 23 + 40*(std::log(proj_momentum/0.73))*
00819                          (std::log(proj_momentum/0.73));
00820       }
00821       else    // if( proj_momentum < 10.  )
00822       {
00823          hpXscv = 39.0+
00824               75*(proj_momentum - 1.2)/(std::pow(proj_momentum,3.0) + 0.15);
00825       }
00826       // pn to be np
00827 
00828       if( proj_momentum < 0.8 )
00829       {
00830         hnXscv = 33+30*std::pow(std::log(proj_momentum/1.3),4.0);
00831       }      
00832       else if( proj_momentum < 1.4 )
00833       {
00834         hnXscv = 33+30*std::pow(std::log(proj_momentum/0.95),2.0);
00835       }
00836       else   // if( proj_momentum < 10.  )
00837       {
00838         hnXscv = 33.3+
00839               20.8*(std::pow(proj_momentum,2.0)-1.35)/
00840                  (std::pow(proj_momentum,2.50)+0.95);
00841       }
00842       xsection = hpXscv*zz + hnXscv*nn;
00843       // xsection = hpXscv*(Zt + Nt);
00844       // xsection = hnXscv*(Zt + Nt);
00845     }    
00846     // xsection *= 0.95;
00847   } 
00848   else if( theParticle == theAProton ) 
00849   {
00850     // xsection  = Zt*( 35.45 + B*std::pow(std::log(sMand/s0),2.) 
00851     //                       + 42.53*std::pow(sMand,-eta1) + 33.34*std::pow(sMand,-eta2));
00852 
00853     // xsection += Nt*( 35.80 + B*std::pow(std::log(sMand/s0),2.) 
00854     //                    + 40.15*std::pow(sMand,-eta1) + 30.*std::pow(sMand,-eta2));
00855 
00856     G4double logP = std::log(proj_momentum);
00857 
00858     if( proj_momentum <= 1.0 )
00859     {
00860       xsection  = zz*(65.55 + 53.84/(proj_momentum+1.e-6)  );
00861     }
00862     else
00863     {
00864       xsection  = zz*( 41.1 + 77.2*std::pow( proj_momentum, -0.68) 
00865                        + 0.293*logP*logP - 1.82*logP );
00866     }
00867     if ( nn > 0.)  
00868     {
00869       xsection += nn*( 41.9 + 96.2*std::pow( proj_momentum, -0.99) - 0.154*logP);
00870     }
00871     else // H
00872     {
00873       fInelasticXsc =   38.0 + 38.0*std::pow( proj_momentum, -0.96) 
00874                         - 0.169*logP*logP;
00875       fInelasticXsc *=  millibarn;
00876     }    
00877   } 
00878   else if( theParticle == thePiPlus ) 
00879   {
00880     if(proj_momentum < 0.4)
00881     {
00882       G4double Ex3 = 180*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.085/0.085);
00883       hpXscv      = Ex3+20.0;
00884     }
00885     else if( proj_momentum < 1.15 )
00886     {
00887       G4double Ex4 = 88*(std::log(proj_momentum/0.75))*(std::log(proj_momentum/0.75));
00888       hpXscv = Ex4+14.0;
00889     }
00890     else if(proj_momentum < 3.5)
00891     {
00892       G4double Ex1 = 3.2*std::exp(-(proj_momentum-2.55)*(proj_momentum-2.55)/0.55/0.55);
00893       G4double Ex2 = 12*std::exp(-(proj_momentum-1.47)*(proj_momentum-1.47)/0.225/0.225);
00894       hpXscv = Ex1+Ex2+27.5;
00895     }
00896     else //  if(proj_momentum > 3.5) // mb
00897     {
00898       hpXscv = 10.6+2.*std::log(proj_energy)+25*std::pow(proj_energy,-0.43);
00899     }
00900     // pi+n = pi-p??
00901 
00902     if(proj_momentum < 0.37)
00903     {
00904       hnXscv = 28.0 + 40*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.07/0.07);
00905     }
00906     else if(proj_momentum<0.65)
00907     {
00908        hnXscv = 26+110*(std::log(proj_momentum/0.48))*(std::log(proj_momentum/0.48));
00909     }
00910     else if(proj_momentum<1.3)
00911     {
00912       hnXscv = 36.1+
00913                 10*std::exp(-(proj_momentum-0.72)*(proj_momentum-0.72)/0.06/0.06)+
00914                 24*std::exp(-(proj_momentum-1.015)*(proj_momentum-1.015)/0.075/0.075);
00915     }
00916     else if(proj_momentum<3.0)
00917     {
00918       hnXscv = 36.1+0.079-4.313*std::log(proj_momentum)+
00919                 3*std::exp(-(proj_momentum-2.1)*(proj_momentum-2.1)/0.4/0.4)+
00920                 1.5*std::exp(-(proj_momentum-1.4)*(proj_momentum-1.4)/0.12/0.12);
00921     }
00922     else   // mb
00923     {
00924       hnXscv = 10.6+2*std::log(proj_energy)+30*std::pow(proj_energy,-0.43); 
00925     }
00926     xsection = hpXscv*zz + hnXscv*nn;
00927   } 
00928   else if(theParticle == thePiMinus) 
00929   {
00930     // pi-n = pi+p??
00931 
00932     if(proj_momentum < 0.4)
00933     {
00934       G4double Ex3 = 180*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.085/0.085);
00935       hnXscv      = Ex3+20.0;
00936     }
00937     else if(proj_momentum < 1.15)
00938     {
00939       G4double Ex4 = 88*(std::log(proj_momentum/0.75))*(std::log(proj_momentum/0.75));
00940       hnXscv = Ex4+14.0;
00941     }
00942     else if(proj_momentum < 3.5)
00943     {
00944       G4double Ex1 = 3.2*std::exp(-(proj_momentum-2.55)*(proj_momentum-2.55)/0.55/0.55);
00945       G4double Ex2 = 12*std::exp(-(proj_momentum-1.47)*(proj_momentum-1.47)/0.225/0.225);
00946       hnXscv = Ex1+Ex2+27.5;
00947     }
00948     else //  if(proj_momentum > 3.5) // mb
00949     {
00950       hnXscv = 10.6+2.*std::log(proj_energy)+25*std::pow(proj_energy,-0.43);
00951     }
00952     // pi-p
00953 
00954     if(proj_momentum < 0.37)
00955     {
00956       hpXscv = 28.0 + 40*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.07/0.07);
00957     }
00958     else if(proj_momentum<0.65)
00959     {
00960        hpXscv = 26+110*(std::log(proj_momentum/0.48))*(std::log(proj_momentum/0.48));
00961     }
00962     else if(proj_momentum<1.3)
00963     {
00964       hpXscv = 36.1+
00965                 10*std::exp(-(proj_momentum-0.72)*(proj_momentum-0.72)/0.06/0.06)+
00966                 24*std::exp(-(proj_momentum-1.015)*(proj_momentum-1.015)/0.075/0.075);
00967     }
00968     else if(proj_momentum<3.0)
00969     {
00970       hpXscv = 36.1+0.079-4.313*std::log(proj_momentum)+
00971                 3*std::exp(-(proj_momentum-2.1)*(proj_momentum-2.1)/0.4/0.4)+
00972                 1.5*std::exp(-(proj_momentum-1.4)*(proj_momentum-1.4)/0.12/0.12);
00973     }
00974     else   // mb
00975     {
00976       hpXscv = 10.6+2*std::log(proj_energy)+30*std::pow(proj_energy,-0.43); 
00977     }
00978     xsection = hpXscv*zz + hnXscv*nn;
00979   } 
00980   else if(theParticle == theKPlus) 
00981   {
00982     xsection  = zz*( 17.91 + B*std::pow(std::log(sMand/s0),2.) 
00983                           + 7.14*std::pow(sMand,-eta1) - 13.45*std::pow(sMand,-eta2));
00984 
00985     xsection += nn*( 17.87 + B*std::pow(std::log(sMand/s0),2.) 
00986                           + 5.17*std::pow(sMand,-eta1) - 7.23*std::pow(sMand,-eta2));
00987   } 
00988   else if(theParticle == theKMinus) 
00989   {
00990     xsection  = zz*( 17.91 + B*std::pow(std::log(sMand/s0),2.) 
00991                           + 7.14*std::pow(sMand,-eta1) + 13.45*std::pow(sMand,-eta2));
00992 
00993     xsection += nn*( 17.87 + B*std::pow(std::log(sMand/s0),2.) 
00994                           + 5.17*std::pow(sMand,-eta1) + 7.23*std::pow(sMand,-eta2));
00995   }
00996   else if(theParticle == theSMinus) 
00997   {
00998     xsection  = aa*( 35.20 + B*std::pow(std::log(sMand/s0),2.) 
00999                           - 199.*std::pow(sMand,-eta1) + 264.*std::pow(sMand,-eta2));
01000   } 
01001   else if(theParticle == theGamma) // modify later on
01002   {
01003     xsection  = aa*( 0.0 + B*std::pow(std::log(sMand/s0),2.) 
01004                           + 0.032*std::pow(sMand,-eta1) - 0.0*std::pow(sMand,-eta2));
01005    
01006   } 
01007   else  // as proton ??? 
01008   {
01009     xsection  = zz*( 35.45 + B*std::pow(std::log(sMand/s0),2.) 
01010                           + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2));
01011 
01012     xsection += nn*( 35.80 + B*std::pow(std::log(sMand/s0),2.) 
01013                           + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
01014   } 
01015   xsection *= millibarn; // parametrised in mb
01016   return xsection;
01017 }

G4double G4ComponentGGHadronNucleusXsc::GetHadronNucleonXscNS ( const G4DynamicParticle ,
const G4Element  
)

Definition at line 664 of file G4ComponentGGHadronNucleusXsc.cc.

References G4lrint(), G4Element::GetN(), and G4Element::GetZ().

Referenced by GetHNinelasticXsc(), GetIsoCrossSection(), GetRatioQE(), and GetRatioSD().

00666 {
00667   G4int At = G4lrint(anElement->GetN());  // number of nucleons 
00668   G4int Zt = G4lrint(anElement->GetZ());  // number of protons
00669 
00670   return GetHadronNucleonXscNS(aParticle, At, Zt);
00671 }

G4double G4ComponentGGHadronNucleusXsc::GetHadronNucleonXscPDG ( const G4DynamicParticle ,
G4int  At,
G4int  Zt 
)

Definition at line 549 of file G4ComponentGGHadronNucleusXsc.cc.

References CalcMandelstamS(), G4DynamicParticle::GetDefinition(), G4DynamicParticle::GetMass(), G4DynamicParticle::GetMomentum(), G4ParticleTable::GetParticleTable(), G4InuclParticleNames::nn, and G4InuclParticleNames::s0.

00551 {
00552   G4double xsection;
00553 
00554   G4int Nt = At-Zt;              // number of neutrons
00555   if (Nt < 0) Nt = 0;
00556   
00557   G4double zz = Zt;
00558   G4double aa = At;
00559   G4double nn = Nt;
00560 
00561   G4double targ_mass = G4ParticleTable::GetParticleTable()->
00562     GetIonTable()->GetIonMass(Zt, At);
00563 
00564   targ_mass = 0.939*GeV;  // ~mean neutron and proton ???
00565 
00566   G4double proj_mass     = aParticle->GetMass(); 
00567   G4double proj_momentum = aParticle->GetMomentum().mag();
00568 
00569   G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum );
00570 
00571   sMand         /= GeV*GeV;  // in GeV for parametrisation
00572 
00573   // General PDG fit constants
00574 
00575   G4double s0   = 5.38*5.38; // in Gev^2
00576   G4double eta1 = 0.458;
00577   G4double eta2 = 0.458;
00578   G4double B    = 0.308;
00579 
00580 
00581   const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
00582   
00583 
00584   if(theParticle == theNeutron) // proton-neutron fit 
00585   {
00586     xsection = zz*( 35.80 + B*std::pow(std::log(sMand/s0),2.) 
00587                           + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
00588     xsection  += nn*( 35.45 + B*std::pow(std::log(sMand/s0),2.) 
00589                       + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2)); // pp for nn
00590   } 
00591   else if(theParticle == theProton) 
00592   {
00593       
00594       xsection  = zz*( 35.45 + B*std::pow(std::log(sMand/s0),2.) 
00595                           + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2));
00596 
00597       xsection += nn*( 35.80 + B*std::pow(std::log(sMand/s0),2.) 
00598                           + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
00599   } 
00600   else if(theParticle == theAProton) 
00601   {
00602     xsection  = zz*( 35.45 + B*std::pow(std::log(sMand/s0),2.) 
00603                           + 42.53*std::pow(sMand,-eta1) + 33.34*std::pow(sMand,-eta2));
00604 
00605     xsection += nn*( 35.80 + B*std::pow(std::log(sMand/s0),2.) 
00606                           + 40.15*std::pow(sMand,-eta1) + 30.*std::pow(sMand,-eta2));
00607   } 
00608   else if(theParticle == thePiPlus) 
00609   {
00610     xsection  = aa*( 20.86 + B*std::pow(std::log(sMand/s0),2.) 
00611                           + 19.24*std::pow(sMand,-eta1) - 6.03*std::pow(sMand,-eta2));
00612   } 
00613   else if(theParticle == thePiMinus) 
00614   {
00615     xsection  = aa*( 20.86 + B*std::pow(std::log(sMand/s0),2.) 
00616                           + 19.24*std::pow(sMand,-eta1) + 6.03*std::pow(sMand,-eta2));
00617   } 
00618   else if(theParticle == theKPlus || theParticle == theK0L ) 
00619   {
00620     xsection  = zz*( 17.91 + B*std::pow(std::log(sMand/s0),2.) 
00621                           + 7.14*std::pow(sMand,-eta1) - 13.45*std::pow(sMand,-eta2));
00622 
00623     xsection += nn*( 17.87 + B*std::pow(std::log(sMand/s0),2.) 
00624                           + 5.17*std::pow(sMand,-eta1) - 7.23*std::pow(sMand,-eta2));
00625   } 
00626   else if(theParticle == theKMinus || theParticle == theK0S ) 
00627   {
00628     xsection  = zz*( 17.91 + B*std::pow(std::log(sMand/s0),2.) 
00629                           + 7.14*std::pow(sMand,-eta1) + 13.45*std::pow(sMand,-eta2));
00630 
00631     xsection += nn*( 17.87 + B*std::pow(std::log(sMand/s0),2.) 
00632                           + 5.17*std::pow(sMand,-eta1) + 7.23*std::pow(sMand,-eta2));
00633   }
00634   else if(theParticle == theSMinus) 
00635   {
00636     xsection  = aa*( 35.20 + B*std::pow(std::log(sMand/s0),2.) 
00637                           - 199.*std::pow(sMand,-eta1) + 264.*std::pow(sMand,-eta2));
00638   } 
00639   else if(theParticle == theGamma) // modify later on
00640   {
00641     xsection  = aa*( 0.0 + B*std::pow(std::log(sMand/s0),2.) 
00642                           + 0.032*std::pow(sMand,-eta1) - 0.0*std::pow(sMand,-eta2));
00643    
00644   } 
00645   else  // as proton ??? 
00646   {
00647     xsection  = zz*( 35.45 + B*std::pow(std::log(sMand/s0),2.) 
00648                           + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2));
00649 
00650     xsection += nn*( 35.80 + B*std::pow(std::log(sMand/s0),2.) 
00651                           + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
00652   } 
00653   xsection *= millibarn; // parametrised in mb
00654   return xsection;
00655 }

G4double G4ComponentGGHadronNucleusXsc::GetHadronNucleonXscPDG ( const G4DynamicParticle ,
const G4Element  
)

Definition at line 530 of file G4ComponentGGHadronNucleusXsc.cc.

References G4lrint(), G4Element::GetN(), and G4Element::GetZ().

Referenced by GetHadronNucleonXscNS(), and GetKaonNucleonXscVector().

00532 {
00533   G4int At = G4lrint(anElement->GetN());  // number of nucleons 
00534   G4int Zt = G4lrint(anElement->GetZ());  // number of protons
00535 
00536   return GetHadronNucleonXscPDG(aParticle, At, Zt);
00537 }

G4double G4ComponentGGHadronNucleusXsc::GetHNinelasticXsc ( const G4DynamicParticle ,
G4int  At,
G4int  Zt 
)

Definition at line 1072 of file G4ComponentGGHadronNucleusXsc.cc.

References G4DynamicParticle::GetDefinition(), GetHadronNucleonXscNS(), and GetHNinelasticXscVU().

01074 {
01075   G4ParticleDefinition* hadron = aParticle->GetDefinition();
01076   G4double sumInelastic;
01077   G4int Nt = At - Zt;
01078   if(Nt < 0) Nt = 0;
01079   
01080   if( hadron == theKPlus )
01081   {
01082     sumInelastic =  GetHNinelasticXscVU(aParticle, At, Zt);
01083   }
01084   else
01085   {
01086     //sumInelastic  = Zt*GetHadronNucleonXscMK(aParticle, theProton);
01087     // sumInelastic += Nt*GetHadronNucleonXscMK(aParticle, theNeutron);    
01088     sumInelastic  = G4double(Zt)*GetHadronNucleonXscNS(aParticle, 1, 1);
01089     sumInelastic += G4double(Nt)*GetHadronNucleonXscNS(aParticle, 1, 0);    
01090   } 
01091   return sumInelastic;
01092 }

G4double G4ComponentGGHadronNucleusXsc::GetHNinelasticXsc ( const G4DynamicParticle ,
const G4Element  
)

Definition at line 1058 of file G4ComponentGGHadronNucleusXsc.cc.

References G4lrint(), G4Element::GetN(), and G4Element::GetZ().

Referenced by GetIsoCrossSection(), and GetRatioQE().

01060 {
01061   G4int At = G4lrint(anElement->GetN());  // number of nucleons 
01062   G4int Zt = G4lrint(anElement->GetZ());  // number of protons
01063 
01064   return GetHNinelasticXsc(aParticle, At, Zt);
01065 }

G4double G4ComponentGGHadronNucleusXsc::GetHNinelasticXscVU ( const G4DynamicParticle ,
G4int  At,
G4int  Zt 
)

Definition at line 1100 of file G4ComponentGGHadronNucleusXsc.cc.

References G4DynamicParticle::GetDefinition(), G4DynamicParticle::GetMomentum(), G4ParticleDefinition::GetPDGEncoding(), and G4DynamicParticle::GetTotalEnergy().

Referenced by GetHNinelasticXsc().

01102 {
01103   G4int PDGcode    = aParticle->GetDefinition()->GetPDGEncoding();
01104   G4int absPDGcode = std::abs(PDGcode);
01105 
01106   G4double Elab = aParticle->GetTotalEnergy();              
01107                           // (s - 2*0.88*GeV*GeV)/(2*0.939*GeV)/GeV;
01108   G4double Plab = aParticle->GetMomentum().mag();            
01109                           // std::sqrt(Elab * Elab - 0.88);
01110 
01111   Elab /= GeV;
01112   Plab /= GeV;
01113 
01114   G4double LogPlab    = std::log( Plab );
01115   G4double sqrLogPlab = LogPlab * LogPlab;
01116 
01117   //G4cout<<"Plab = "<<Plab<<G4endl;
01118 
01119   G4double NumberOfTargetProtons = G4double(Zt); 
01120   G4double NumberOfTargetNucleons = G4double(At);
01121   G4double NumberOfTargetNeutrons = NumberOfTargetNucleons - NumberOfTargetProtons;
01122 
01123   if(NumberOfTargetNeutrons < 0.0) NumberOfTargetNeutrons = 0.0;
01124 
01125   G4double Xtotal, Xelastic, Xinelastic;
01126 
01127   if( absPDGcode > 1000 )  //------Projectile is baryon --------
01128   {
01129        G4double XtotPP = 48.0 +  0. *std::pow(Plab, 0.  ) +
01130                          0.522*sqrLogPlab - 4.51*LogPlab;
01131 
01132        G4double XtotPN = 47.3 +  0. *std::pow(Plab, 0.  ) +
01133                          0.513*sqrLogPlab - 4.27*LogPlab;
01134 
01135        G4double XelPP  = 11.9 + 26.9*std::pow(Plab,-1.21) +
01136                          0.169*sqrLogPlab - 1.85*LogPlab;
01137 
01138        G4double XelPN  = 11.9 + 26.9*std::pow(Plab,-1.21) +
01139                          0.169*sqrLogPlab - 1.85*LogPlab;
01140 
01141        Xtotal          = (NumberOfTargetProtons * XtotPP +
01142                           NumberOfTargetNeutrons * XtotPN);
01143 
01144        Xelastic        = (NumberOfTargetProtons * XelPP +
01145                           NumberOfTargetNeutrons * XelPN);
01146   }
01147   else if( PDGcode ==  211 ) //------Projectile is PionPlus -------
01148   {
01149        G4double XtotPiP = 16.4 + 19.3 *std::pow(Plab,-0.42) +
01150                           0.19 *sqrLogPlab - 0.0 *LogPlab;
01151 
01152        G4double XtotPiN = 33.0 + 14.0 *std::pow(Plab,-1.36) +
01153                           0.456*sqrLogPlab - 4.03*LogPlab;
01154 
01155        G4double XelPiP  =  0.0 + 11.4*std::pow(Plab,-0.40) +
01156                            0.079*sqrLogPlab - 0.0 *LogPlab;
01157 
01158        G4double XelPiN  = 1.76 + 11.2*std::pow(Plab,-0.64) +
01159                           0.043*sqrLogPlab - 0.0 *LogPlab;
01160 
01161        Xtotal           = ( NumberOfTargetProtons  * XtotPiP +
01162                             NumberOfTargetNeutrons * XtotPiN  );
01163 
01164        Xelastic         = ( NumberOfTargetProtons  * XelPiP  +
01165                             NumberOfTargetNeutrons * XelPiN   );
01166   }
01167   else if( PDGcode == -211 ) //------Projectile is PionMinus -------
01168   {
01169        G4double XtotPiP = 33.0 + 14.0 *std::pow(Plab,-1.36) +
01170                           0.456*sqrLogPlab - 4.03*LogPlab;
01171 
01172        G4double XtotPiN = 16.4 + 19.3 *std::pow(Plab,-0.42) +
01173                           0.19 *sqrLogPlab - 0.0 *LogPlab;
01174 
01175        G4double XelPiP  = 1.76 + 11.2*std::pow(Plab,-0.64) +
01176                           0.043*sqrLogPlab - 0.0 *LogPlab;
01177 
01178        G4double XelPiN  =  0.0 + 11.4*std::pow(Plab,-0.40) +
01179                            0.079*sqrLogPlab - 0.0 *LogPlab;
01180 
01181        Xtotal           = ( NumberOfTargetProtons  * XtotPiP +
01182                             NumberOfTargetNeutrons * XtotPiN  );
01183 
01184        Xelastic         = ( NumberOfTargetProtons  * XelPiP  +
01185                             NumberOfTargetNeutrons * XelPiN   );
01186   }
01187   else if( PDGcode ==  111 )  //------Projectile is PionZero  -------
01188   {
01189        G4double XtotPiP =(16.4 + 19.3 *std::pow(Plab,-0.42) +
01190                           0.19 *sqrLogPlab - 0.0 *LogPlab +   //Pi+
01191                           33.0 + 14.0 *std::pow(Plab,-1.36) +
01192                           0.456*sqrLogPlab - 4.03*LogPlab)/2; //Pi-
01193 
01194        G4double XtotPiN =(33.0 + 14.0 *std::pow(Plab,-1.36) +
01195                           0.456*sqrLogPlab - 4.03*LogPlab +   //Pi+
01196                           16.4 + 19.3 *std::pow(Plab,-0.42) +
01197                           0.19 *sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
01198 
01199        G4double XelPiP  =( 0.0 + 11.4*std::pow(Plab,-0.40) +
01200                            0.079*sqrLogPlab - 0.0 *LogPlab +    //Pi+
01201                            1.76 + 11.2*std::pow(Plab,-0.64) +
01202                            0.043*sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
01203 
01204        G4double XelPiN  =( 1.76 + 11.2*std::pow(Plab,-0.64) +
01205                            0.043*sqrLogPlab - 0.0 *LogPlab +   //Pi+
01206                            0.0  + 11.4*std::pow(Plab,-0.40) +
01207                            0.079*sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
01208 
01209        Xtotal           = ( NumberOfTargetProtons  * XtotPiP +
01210                             NumberOfTargetNeutrons * XtotPiN  );
01211 
01212        Xelastic         = ( NumberOfTargetProtons  * XelPiP  +
01213                             NumberOfTargetNeutrons * XelPiN   );
01214   }
01215   else if( PDGcode == 321 ) //------Projectile is KaonPlus -------
01216   {
01217        G4double XtotKP = 18.1 +  0. *std::pow(Plab, 0.  ) +
01218                          0.26 *sqrLogPlab - 1.0 *LogPlab;
01219        G4double XtotKN = 18.7 +  0. *std::pow(Plab, 0.  ) +
01220                          0.21 *sqrLogPlab - 0.89*LogPlab;
01221 
01222        G4double XelKP  =  5.0 +  8.1*std::pow(Plab,-1.8 ) +
01223                           0.16 *sqrLogPlab - 1.3 *LogPlab;
01224 
01225        G4double XelKN  =  7.3 +  0. *std::pow(Plab,-0.  ) +
01226                           0.29 *sqrLogPlab - 2.4 *LogPlab;
01227 
01228        Xtotal          = ( NumberOfTargetProtons  * XtotKP +
01229                            NumberOfTargetNeutrons * XtotKN  );
01230 
01231        Xelastic        = ( NumberOfTargetProtons  * XelKP  +
01232                            NumberOfTargetNeutrons * XelKN   );
01233   }
01234   else if( PDGcode ==-321 )  //------Projectile is KaonMinus ------
01235   {
01236        G4double XtotKP = 32.1 +  0. *std::pow(Plab, 0.  ) +
01237                          0.66 *sqrLogPlab - 5.6 *LogPlab;
01238        G4double XtotKN = 25.2 +  0. *std::pow(Plab, 0.  ) +
01239                          0.38 *sqrLogPlab - 2.9 *LogPlab;
01240 
01241        G4double XelKP  =  7.3 +  0. *std::pow(Plab,-0.  ) +
01242                           0.29 *sqrLogPlab - 2.4 *LogPlab;
01243 
01244        G4double XelKN  =  5.0 +  8.1*std::pow(Plab,-1.8 ) +
01245                           0.16 *sqrLogPlab - 1.3 *LogPlab;
01246 
01247        Xtotal          = ( NumberOfTargetProtons  * XtotKP +
01248                            NumberOfTargetNeutrons * XtotKN  );
01249 
01250        Xelastic        = ( NumberOfTargetProtons  * XelKP  +
01251                            NumberOfTargetNeutrons * XelKN   );
01252   }
01253   else if( PDGcode == 311 ) //------Projectile is KaonZero ------
01254   {
01255        G4double XtotKP = ( 18.1 +  0. *std::pow(Plab, 0.  ) +
01256                           0.26 *sqrLogPlab - 1.0 *LogPlab +   //K+
01257                           32.1 +  0. *std::pow(Plab, 0.  ) +
01258                           0.66 *sqrLogPlab - 5.6 *LogPlab)/2; //K-
01259 
01260        G4double XtotKN = ( 18.7 +  0. *std::pow(Plab, 0.  ) +
01261                           0.21 *sqrLogPlab - 0.89*LogPlab +   //K+
01262                           25.2 +  0. *std::pow(Plab, 0.  ) +
01263                           0.38 *sqrLogPlab - 2.9 *LogPlab)/2; //K-
01264 
01265        G4double XelKP  = (  5.0 +  8.1*std::pow(Plab,-1.8 )
01266                            + 0.16 *sqrLogPlab - 1.3 *LogPlab +   //K+
01267                            7.3 +  0. *std::pow(Plab,-0.  ) +
01268                            0.29 *sqrLogPlab - 2.4 *LogPlab)/2; //K-
01269 
01270        G4double XelKN  = (  7.3 +  0. *std::pow(Plab,-0.  ) +
01271                            0.29 *sqrLogPlab - 2.4 *LogPlab +   //K+
01272                            5.0 +  8.1*std::pow(Plab,-1.8 ) +
01273                            0.16 *sqrLogPlab - 1.3 *LogPlab)/2; //K-
01274 
01275        Xtotal          = ( NumberOfTargetProtons  * XtotKP +
01276                            NumberOfTargetNeutrons * XtotKN  );
01277 
01278        Xelastic        = ( NumberOfTargetProtons  * XelKP  +
01279                            NumberOfTargetNeutrons * XelKN   );
01280   }
01281   else  //------Projectile is undefined, Nucleon assumed
01282   {
01283        G4double XtotPP = 48.0 +  0. *std::pow(Plab, 0.  ) +
01284                          0.522*sqrLogPlab - 4.51*LogPlab;
01285 
01286        G4double XtotPN = 47.3 +  0. *std::pow(Plab, 0.  ) +
01287                          0.513*sqrLogPlab - 4.27*LogPlab;
01288 
01289        G4double XelPP  = 11.9 + 26.9*std::pow(Plab,-1.21) +
01290                          0.169*sqrLogPlab - 1.85*LogPlab;
01291        G4double XelPN  = 11.9 + 26.9*std::pow(Plab,-1.21) +
01292                          0.169*sqrLogPlab - 1.85*LogPlab;
01293 
01294        Xtotal          = ( NumberOfTargetProtons  * XtotPP +
01295                            NumberOfTargetNeutrons * XtotPN  );
01296 
01297        Xelastic        = ( NumberOfTargetProtons  * XelPP  +
01298                            NumberOfTargetNeutrons * XelPN   );
01299   }
01300   Xinelastic = Xtotal - Xelastic;
01301 
01302   if( Xinelastic < 0.) Xinelastic = 0.;
01303 
01304   return Xinelastic*= millibarn;
01305 }

G4double G4ComponentGGHadronNucleusXsc::GetInelasticElementCrossSection ( const G4ParticleDefinition aParticle,
G4double  kinEnergy,
G4int  Z,
G4double  A 
) [virtual]

Implements G4VComponentCrossSection.

Definition at line 138 of file G4ComponentGGHadronNucleusXsc.cc.

References GetIsoCrossSection().

00141 {
00142   G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), 
00143                                                 kinEnergy);
00144   fTotalXsc = GetIsoCrossSection(aDP, Z, G4int(A));
00145   delete aDP;
00146 
00147   return fInelasticXsc;
00148 }

G4double G4ComponentGGHadronNucleusXsc::GetInelasticGlauberGribov ( const G4DynamicParticle ,
G4int  Z,
G4int  A 
) [inline]

Definition at line 222 of file G4ComponentGGHadronNucleusXsc.hh.

References GetIsoCrossSection().

00224 {
00225   GetIsoCrossSection(dp, Z, A);
00226   return fInelasticXsc;
00227 }

G4double G4ComponentGGHadronNucleusXsc::GetInelasticGlauberGribovXsc (  )  [inline]

Definition at line 139 of file G4ComponentGGHadronNucleusXsc.hh.

00139 { return fInelasticXsc; }; 

G4double G4ComponentGGHadronNucleusXsc::GetInelasticIsotopeCrossSection ( const G4ParticleDefinition aParticle,
G4double  kinEnergy,
G4int  Z,
G4int  A 
) [virtual]

Implements G4VComponentCrossSection.

Definition at line 124 of file G4ComponentGGHadronNucleusXsc.cc.

References GetIsoCrossSection().

00127 {
00128   G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), 
00129                                                 kinEnergy);
00130   fTotalXsc = GetIsoCrossSection(aDP, Z, A);
00131   delete aDP;
00132 
00133   return fInelasticXsc;
00134 }

G4double G4ComponentGGHadronNucleusXsc::GetIsoCrossSection ( const G4DynamicParticle ,
G4int  Z,
G4int  A,
const G4Isotope iso = 0,
const G4Element elm = 0,
const G4Material mat = 0 
)

Definition at line 240 of file G4ComponentGGHadronNucleusXsc.cc.

References G4DynamicParticle::GetDefinition(), GetHadronNucleonXscNS(), G4HadronNucleonXsc::GetHadronNucleonXscNS(), GetHNinelasticXsc(), G4HadronNucleonXsc::GetInelasticHadronNucleonXsc(), GetKaonNucleonXscVector(), GetNucleusRadius(), GetParticleBarCorIn(), GetParticleBarCorTot(), and G4INCL::Math::pi.

Referenced by ComputeQuasiElasticRatio(), GetElasticElementCrossSection(), GetElasticGlauberGribov(), GetElasticIsotopeCrossSection(), GetInelasticElementCrossSection(), GetInelasticGlauberGribov(), GetInelasticIsotopeCrossSection(), GetTotalElementCrossSection(), and GetTotalIsotopeCrossSection().

00245 {
00246   G4double xsection, sigma, cofInelastic, cofTotal, nucleusSquare, ratio;
00247   G4double hpInXsc(0.), hnInXsc(0.);
00248   G4double R             = GetNucleusRadius(A); 
00249 
00250   G4int N = A - Z;              // number of neutrons
00251   if (N < 0) N = 0;
00252 
00253   const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
00254 
00255   if( theParticle == theProton  || 
00256       theParticle == theNeutron ||
00257       theParticle == thePiPlus  || 
00258       theParticle == thePiMinus      )
00259   {
00260     // sigma        = GetHadronNucleonXscNS(aParticle, A, Z);
00261 
00262     sigma = Z*hnXsc->GetHadronNucleonXscNS(aParticle, theProton);
00263 
00264     hpInXsc = hnXsc->GetInelasticHadronNucleonXsc();
00265 
00266     sigma += N*hnXsc->GetHadronNucleonXscNS(aParticle, theNeutron);
00267 
00268     hnInXsc = hnXsc->GetInelasticHadronNucleonXsc();
00269 
00270     cofInelastic = 2.4;
00271     cofTotal     = 2.0;
00272   }
00273   else if( theParticle == theKPlus   || 
00274            theParticle == theKMinus  || 
00275            theParticle == theK0S     || 
00276            theParticle == theK0L        ) 
00277   {
00278     sigma        = GetKaonNucleonXscVector(aParticle, A, Z);
00279     cofInelastic = 2.2;
00280     cofTotal     = 2.0;
00281     R = 1.3*fermi;
00282     R *= std::pow(G4double(A), 0.3333);
00283   }
00284   else
00285   {
00286     sigma        = GetHadronNucleonXscNS(aParticle, A, Z);
00287     cofInelastic = 2.2;
00288     cofTotal     = 2.0;
00289   }
00290   // cofInelastic = 2.0;
00291 
00292   if( A > 1 )
00293   { 
00294     nucleusSquare = cofTotal*pi*R*R;   // basically 2piRR
00295     ratio = sigma/nucleusSquare;
00296 
00297     xsection =  nucleusSquare*std::log( 1. + ratio );
00298 
00299     xsection *= GetParticleBarCorTot(theParticle, Z);
00300 
00301     fTotalXsc = xsection;
00302 
00303   
00304 
00305     fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
00306 
00307     fInelasticXsc *= GetParticleBarCorIn(theParticle, Z);
00308 
00309     fElasticXsc   = fTotalXsc - fInelasticXsc;
00310 
00311     if(fElasticXsc < 0.) fElasticXsc = 0.;
00312     
00313     G4double difratio = ratio/(1.+ratio);
00314 
00315     fDiffractionXsc = 0.5*nucleusSquare*( difratio - std::log( 1. + difratio ) );
00316 
00317 
00318     // sigma = GetHNinelasticXsc(aParticle, A, Z);
00319 
00320     sigma = Z*hpInXsc + N*hnInXsc;
00321 
00322     ratio = sigma/nucleusSquare;
00323 
00324     fProductionXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
00325 
00326     if (fElasticXsc < 0.) fElasticXsc = 0.;
00327   }
00328   else // H
00329   {
00330     fTotalXsc = sigma;
00331     xsection  = sigma;
00332     
00333     if ( theParticle != theAProton ) 
00334     {
00335       sigma         = GetHNinelasticXsc(aParticle, A, Z);
00336       fInelasticXsc = sigma;
00337       fElasticXsc   = fTotalXsc - fInelasticXsc;      
00338     }
00339     else
00340     {
00341       fElasticXsc   = fTotalXsc - fInelasticXsc;
00342     }
00343     if (fElasticXsc < 0.) fElasticXsc = 0.;
00344       
00345   }
00346   return xsection; 
00347 }

G4double G4ComponentGGHadronNucleusXsc::GetKaonNucleonXscVector ( const G4DynamicParticle ,
G4int  At,
G4int  Zt 
)

Definition at line 1020 of file G4ComponentGGHadronNucleusXsc.cc.

References G4DynamicParticle::GetDefinition(), GetHadronNucleonXscPDG(), G4DynamicParticle::GetKineticEnergy(), G4HadronNucleonXsc::GetKmNeutronTotXscVector(), G4HadronNucleonXsc::GetKmProtonTotXscVector(), G4HadronNucleonXsc::GetKpNeutronTotXscVector(), and G4HadronNucleonXsc::GetKpProtonTotXscVector().

Referenced by GetIsoCrossSection().

01022 {
01023   G4double Tkin, logTkin, xsc, xscP, xscN;
01024   const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
01025 
01026   G4int Nt = At-Zt;              // number of neutrons
01027   if (Nt < 0) Nt = 0;  
01028 
01029   Tkin = aParticle->GetKineticEnergy(); // Tkin in MeV
01030 
01031   if( Tkin > 70*GeV ) return GetHadronNucleonXscPDG(aParticle,At,Zt);
01032 
01033   logTkin = std::log(Tkin); // Tkin in MeV!!!
01034 
01035  if( theParticle == theKPlus )
01036  {
01037    xscP = hnXsc->GetKpProtonTotXscVector(logTkin);
01038    xscN = hnXsc->GetKpNeutronTotXscVector(logTkin);
01039  }
01040  else if( theParticle == theKMinus )
01041  {
01042    xscP = hnXsc->GetKmProtonTotXscVector(logTkin);
01043    xscN = hnXsc->GetKmNeutronTotXscVector(logTkin);
01044  }
01045  else // K-zero as half of K+ and K-
01046  {
01047    xscP = (hnXsc->GetKpProtonTotXscVector(logTkin)+hnXsc->GetKmProtonTotXscVector(logTkin))*0.5;
01048    xscN = (hnXsc->GetKpNeutronTotXscVector(logTkin)+hnXsc->GetKmNeutronTotXscVector(logTkin))*0.5;
01049  }
01050  xsc = xscP*Zt + xscN*Nt;
01051   return xsc;
01052 }

G4double G4ComponentGGHadronNucleusXsc::GetNucleusRadius ( G4int  At  ) 

Definition at line 1369 of file G4ComponentGGHadronNucleusXsc.cc.

References G4INCL::Math::oneThird.

01370 {
01371   G4double oneThird = 1.0/3.0;
01372   G4double cubicrAt = std::pow(G4double(At), oneThird); 
01373 
01374   G4double R;  // = fRadiusConst*cubicrAt;
01375 
01376   /*
01377   G4double tmp = std::pow( cubicrAt-1., 3.);
01378   tmp         += At;
01379   tmp         *= 0.5;
01380 
01381   if (At > 20.)
01382   {
01383     R = fRadiusConst*std::pow (tmp, oneThird); 
01384   }
01385   else
01386   {
01387     R = fRadiusConst*cubicrAt; 
01388   }
01389   */
01390 
01391   R = fRadiusConst*cubicrAt;
01392 
01393   G4double meanA = 20.;
01394   G4double tauA  = 20.; 
01395 
01396   if (At > 20)   // 20.
01397   {
01398     R *= ( 0.8 + 0.2*std::exp( -(G4double(At) - meanA)/tauA) ); 
01399   }
01400   else
01401   {
01402     R *= ( 1.0 + 0.1*( 1. - std::exp( (G4double(At) - meanA)/tauA) ) ); 
01403   }
01404 
01405   return R;
01406 }

G4double G4ComponentGGHadronNucleusXsc::GetNucleusRadius ( const G4DynamicParticle ,
const G4Element  
)

Definition at line 1312 of file G4ComponentGGHadronNucleusXsc.cc.

References G4lrint(), G4Element::GetN(), and G4INCL::Math::oneThird.

Referenced by GetIsoCrossSection(), GetRatioQE(), and GetRatioSD().

01314 {
01315   G4int At = G4lrint(anElement->GetN());
01316   G4double oneThird = 1.0/3.0;
01317   G4double cubicrAt = std::pow(G4double(At), oneThird); 
01318 
01319   G4double R;  // = fRadiusConst*cubicrAt;
01320   /*  
01321   G4double tmp = std::pow( cubicrAt-1., 3.);
01322   tmp         += At;
01323   tmp         *= 0.5;
01324 
01325   if (At > 20.)   // 20.
01326   {
01327     R = fRadiusConst*std::pow (tmp, oneThird); 
01328   }
01329   else
01330   {
01331     R = fRadiusConst*cubicrAt; 
01332   }
01333   */
01334   
01335   R = fRadiusConst*cubicrAt;
01336 
01337   G4double meanA  = 21.;
01338 
01339   G4double tauA1  = 40.; 
01340   G4double tauA2  = 10.; 
01341   G4double tauA3  = 5.; 
01342 
01343   G4double a1 = 0.85;
01344   G4double b1 = 1. - a1;
01345 
01346   G4double b2 = 0.3;
01347   G4double b3 = 4.;
01348 
01349   if (At > 20)   // 20.
01350   {
01351     R *= ( a1 + b1*std::exp( -(At - meanA)/tauA1) ); 
01352   }
01353   else if (At > 3)
01354   {
01355     R *= ( 1.0 + b2*( 1. - std::exp( (At - meanA)/tauA2) ) ); 
01356   }
01357   else 
01358   {
01359     R *= ( 1.0 + b3*( 1. - std::exp( (At - meanA)/tauA3) ) ); 
01360   }  
01361   return R;
01362  
01363 }

G4double G4ComponentGGHadronNucleusXsc::GetParticleBarCorIn ( const G4ParticleDefinition theParticle,
G4int  Z 
) [inline]

Definition at line 255 of file G4ComponentGGHadronNucleusXsc.hh.

Referenced by GetIsoCrossSection().

00257 {
00258   if(Z >= 2 && Z <= 92)
00259   {
00260     if(      theParticle == theProton ) return fProtonBarCorrectionIn[Z]; 
00261     else if( theParticle == theNeutron) return fNeutronBarCorrectionIn[Z]; 
00262     else if( theParticle == thePiPlus ) return fPionPlusBarCorrectionIn[Z];
00263     else if( theParticle == thePiMinus) return fPionMinusBarCorrectionIn[Z];
00264     else return 1.0;
00265   }
00266   else return 1.0;
00267 }

G4double G4ComponentGGHadronNucleusXsc::GetParticleBarCorTot ( const G4ParticleDefinition theParticle,
G4int  Z 
) [inline]

Definition at line 235 of file G4ComponentGGHadronNucleusXsc.hh.

Referenced by GetIsoCrossSection().

00237 {
00238   if(Z >= 2 && Z <= 92)
00239   {
00240     if(      theParticle == theProton ) return fProtonBarCorrectionTot[Z]; 
00241     else if( theParticle == theNeutron) return fNeutronBarCorrectionTot[Z]; 
00242     else if( theParticle == thePiPlus ) return fPionPlusBarCorrectionTot[Z];
00243     else if( theParticle == thePiMinus) return fPionMinusBarCorrectionTot[Z];
00244     else return 1.0;
00245   }
00246   else return 1.0;
00247 }

G4double G4ComponentGGHadronNucleusXsc::GetProductionGlauberGribovXsc (  )  [inline]

Definition at line 140 of file G4ComponentGGHadronNucleusXsc.hh.

00140 { return fProductionXsc; }; 

G4double G4ComponentGGHadronNucleusXsc::GetRadiusConst (  )  [inline]

Definition at line 142 of file G4ComponentGGHadronNucleusXsc.hh.

00142 { return fRadiusConst;  }; 

G4double G4ComponentGGHadronNucleusXsc::GetRatioQE ( const G4DynamicParticle ,
G4int  At,
G4int  Zt 
)

Definition at line 396 of file G4ComponentGGHadronNucleusXsc.cc.

References G4DynamicParticle::GetDefinition(), GetHadronNucleonXscNS(), GetHNinelasticXsc(), GetNucleusRadius(), and G4INCL::Math::pi.

00397 {
00398   G4double sigma, cofInelastic, cofTotal, nucleusSquare, ratio;
00399   G4double R             = GetNucleusRadius(A); 
00400 
00401   const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
00402 
00403   if( theParticle == theProton  || 
00404       theParticle == theNeutron ||
00405       theParticle == thePiPlus  || 
00406       theParticle == thePiMinus      )
00407   {
00408     sigma        = GetHadronNucleonXscNS(aParticle, A, Z);
00409     cofInelastic = 2.4;
00410     cofTotal     = 2.0;
00411   }
00412   else
00413   {
00414     sigma        = GetHadronNucleonXscNS(aParticle, A, Z);
00415     cofInelastic = 2.2;
00416     cofTotal     = 2.0;
00417   }
00418   nucleusSquare = cofTotal*pi*R*R;   // basically 2piRR
00419   ratio = sigma/nucleusSquare;
00420 
00421   fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
00422 
00423   sigma = GetHNinelasticXsc(aParticle, A, Z);
00424   ratio = sigma/nucleusSquare;
00425 
00426   fProductionXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
00427 
00428   if (fInelasticXsc > fProductionXsc) ratio = (fInelasticXsc-fProductionXsc)/fInelasticXsc;
00429   else                                ratio = 0.;
00430   if ( ratio < 0. )                   ratio = 0.;
00431 
00432   return ratio; 
00433 }

G4double G4ComponentGGHadronNucleusXsc::GetRatioSD ( const G4DynamicParticle ,
G4int  At,
G4int  Zt 
)

Definition at line 354 of file G4ComponentGGHadronNucleusXsc.cc.

References G4DynamicParticle::GetDefinition(), GetHadronNucleonXscNS(), GetNucleusRadius(), and G4INCL::Math::pi.

00355 {
00356   G4double sigma, cofInelastic, cofTotal, nucleusSquare, ratio;
00357   G4double R             = GetNucleusRadius(A); 
00358 
00359   const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
00360 
00361   if( theParticle == theProton  || 
00362       theParticle == theNeutron ||
00363       theParticle == thePiPlus  || 
00364       theParticle == thePiMinus      )
00365   {
00366     sigma        = GetHadronNucleonXscNS(aParticle, A, Z);
00367     cofInelastic = 2.4;
00368     cofTotal     = 2.0;
00369   }
00370   else
00371   {
00372     sigma        = GetHadronNucleonXscNS(aParticle, A, Z);
00373     cofInelastic = 2.2;
00374     cofTotal     = 2.0;
00375   }
00376   nucleusSquare = cofTotal*pi*R*R;   // basically 2piRR
00377   ratio = sigma/nucleusSquare;
00378 
00379   fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
00380    
00381   G4double difratio = ratio/(1.+ratio);
00382 
00383   fDiffractionXsc = 0.5*nucleusSquare*( difratio - std::log( 1. + difratio ) );
00384 
00385   if (fInelasticXsc > 0.) ratio = fDiffractionXsc/fInelasticXsc;
00386   else                    ratio = 0.;
00387 
00388   return ratio; 
00389 }

G4double G4ComponentGGHadronNucleusXsc::GetTotalElementCrossSection ( const G4ParticleDefinition aParticle,
G4double  kinEnergy,
G4int  Z,
G4double  A 
) [virtual]

Implements G4VComponentCrossSection.

Definition at line 110 of file G4ComponentGGHadronNucleusXsc.cc.

References GetIsoCrossSection().

00113 {
00114   G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), 
00115                                                 kinEnergy);
00116   fTotalXsc = GetIsoCrossSection(aDP, Z, G4int(A));
00117   delete aDP;
00118 
00119   return fTotalXsc;
00120 }

G4double G4ComponentGGHadronNucleusXsc::GetTotalGlauberGribovXsc (  )  [inline]

Definition at line 137 of file G4ComponentGGHadronNucleusXsc.hh.

00137 { return fTotalXsc;     }; 

G4double G4ComponentGGHadronNucleusXsc::GetTotalIsotopeCrossSection ( const G4ParticleDefinition aParticle,
G4double  kinEnergy,
G4int  Z,
G4int  A 
) [virtual]

Implements G4VComponentCrossSection.

Definition at line 96 of file G4ComponentGGHadronNucleusXsc.cc.

References GetIsoCrossSection().

00099 {
00100   G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), 
00101                                                 kinEnergy);
00102   fTotalXsc = GetIsoCrossSection(aDP, Z, A);
00103   delete aDP;
00104 
00105   return fTotalXsc;
00106 }

G4bool G4ComponentGGHadronNucleusXsc::IsIsoApplicable ( const G4DynamicParticle aDP,
G4int  Z,
G4int  A,
const G4Element elm = 0,
const G4Material mat = 0 
)

Definition at line 204 of file G4ComponentGGHadronNucleusXsc.cc.

References G4DynamicParticle::GetDefinition(), and G4DynamicParticle::GetKineticEnergy().

00208 {
00209   G4bool applicable      = false;
00210   // G4int baryonNumber     = aDP->GetDefinition()->GetBaryonNumber();
00211   G4double kineticEnergy = aDP->GetKineticEnergy();
00212 
00213   const G4ParticleDefinition* theParticle = aDP->GetDefinition();
00214  
00215   if ( ( kineticEnergy  >= fLowerLimit &&
00216          Z > 1 &&      // >=  He
00217        ( theParticle == theAProton   ||
00218          theParticle == theGamma     ||
00219          theParticle == theKPlus     ||
00220          theParticle == theKMinus    || 
00221          theParticle == theK0L     ||
00222          theParticle == theK0S    || 
00223          theParticle == theSMinus    ||  
00224          theParticle == theProton    ||
00225          theParticle == theNeutron   ||   
00226          theParticle == thePiPlus    ||
00227          theParticle == thePiMinus       ) )    ) applicable = true;
00228 
00229   return applicable;
00230 }

void G4ComponentGGHadronNucleusXsc::SetEnergyLowerLimit ( G4double  E  )  [inline]

Definition at line 147 of file G4ComponentGGHadronNucleusXsc.hh.

00147 {fLowerLimit=E;};


The documentation for this class was generated from the following files:
Generated on Mon May 27 17:51:41 2013 for Geant4 by  doxygen 1.4.7