G4ProtonEvaporationProbability.cc

Go to the documentation of this file.
00001 //
00002 // ********************************************************************
00003 // * License and Disclaimer                                           *
00004 // *                                                                  *
00005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
00006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
00007 // * conditions of the Geant4 Software License,  included in the file *
00008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
00009 // * include a list of copyright holders.                             *
00010 // *                                                                  *
00011 // * Neither the authors of this software system, nor their employing *
00012 // * institutes,nor the agencies providing financial support for this *
00013 // * work  make  any representation or  warranty, express or implied, *
00014 // * regarding  this  software system or assume any liability for its *
00015 // * use.  Please see the license in the file  LICENSE  and URL above *
00016 // * for the full disclaimer and the limitation of liability.         *
00017 // *                                                                  *
00018 // * This  code  implementation is the result of  the  scientific and *
00019 // * technical work of the GEANT4 collaboration.                      *
00020 // * By using,  copying,  modifying or  distributing the software (or *
00021 // * any work based  on the software)  you  agree  to acknowledge its *
00022 // * use  in  resulting  scientific  publications,  and indicate your *
00023 // * acceptance of all terms of the Geant4 Software license.          *
00024 // ********************************************************************
00025 //
00026 // $Id$
00027 //
00028 // J.M. Quesada (August2008). Based on:
00029 //
00030 // Hadronic Process: Nuclear De-excitations
00031 // by V. Lara (Oct 1998)
00032 //
00033 // Modified:
00034 // 03-09-2008 J.M. Quesada for external choice of inverse cross section option
00035 // 17-11-2010 V.Ivanchenko integer Z and A
00036 
00037 #include "G4ProtonEvaporationProbability.hh"
00038 #include "G4PhysicalConstants.hh"
00039 #include "G4SystemOfUnits.hh"
00040 
00041 G4ProtonEvaporationProbability::G4ProtonEvaporationProbability() :
00042     G4EvaporationProbability(1,1,2,&theCoulombBarrier) // A,Z,Gamma,&theCoulombBarrier
00043 {
00044   ResidualA = ResidualZ = theA = theZ = FragmentA = 0;
00045   ResidualAthrd = FragmentAthrd = U = 0.0;
00046 }
00047 
00048 G4ProtonEvaporationProbability::~G4ProtonEvaporationProbability() 
00049 {}
00050 
00051 G4double G4ProtonEvaporationProbability::CalcAlphaParam(const G4Fragment & fragment) 
00052   { return 1.0 + CCoeficient(fragment.GetZ_asInt()-GetZ());}
00053         
00054 G4double G4ProtonEvaporationProbability::CalcBetaParam(const G4Fragment & )  
00055   { return 0.0; }
00056 
00057 G4double G4ProtonEvaporationProbability::CCoeficient(G4int aZ) 
00058 {
00059   // Data comes from 
00060   // Dostrovsky, Fraenkel and Friedlander
00061   // Physical Review, vol 116, num. 3 1959
00062   // 
00063   // const G4int size = 5;
00064   // G4double Zlist[5] = { 10.0, 20.0, 30.0, 50.0, 70.0};
00065   // G4double Cp[5] = { 0.50, 0.28, 0.20, 0.15, 0.10};
00066   G4double C = 0.0;
00067         
00068   if (aZ >= 70) {
00069     C = 0.10;
00070   } else {
00071     C = ((((0.15417e-06*aZ) - 0.29875e-04)*aZ + 0.21071e-02)*aZ - 0.66612e-01)*aZ + 0.98375;
00072   }
00073         
00074   return C;
00075         
00076 }
00077 
00079 //J. M. Quesada (Dec 2007-June 2008): New inverse reaction cross sections for protons
00080 //OPT=0 Dostrovski's parameterization
00081 //OPT=1 Chatterjee's parameterization 
00082 //OPT=2,4 Wellisch's parameterization 
00083 //OPT=3 Kalbach's parameterization
00084 // 
00085 G4double 
00086 G4ProtonEvaporationProbability::CrossSection(const  G4Fragment & fragment, G4double K)
00087 {
00088   //  G4cout<<" In G4ProtonEVaporationProbability OPTxs="<<OPTxs<<G4endl;
00089   //  G4cout<<" In G4ProtonEVaporationProbability useSICB="<<useSICB<<G4endl;
00090 
00091   theA=GetA();
00092   theZ=GetZ();
00093   ResidualA=fragment.GetA_asInt()-theA;
00094   ResidualZ=fragment.GetZ_asInt()-theZ; 
00095   
00096   ResidualAthrd=fG4pow->Z13(ResidualA);
00097   FragmentA=fragment.GetA_asInt();
00098   FragmentAthrd=fG4pow->Z13(FragmentA);
00099 
00100   U=fragment.GetExcitationEnergy();
00101 
00102   if (OPTxs==0) {std::ostringstream errOs;
00103     errOs << "We should'n be here (OPT =0) at evaporation cross section calculation (protons)!!"  <<G4endl;
00104     throw G4HadronicException(__FILE__, __LINE__, errOs.str());
00105     return 0.;}
00106   else if( OPTxs==1 ) return GetOpt1( K);
00107   else if( OPTxs==2 ||OPTxs==4) return GetOpt2( K);
00108   else if (OPTxs==3 )  return GetOpt3( K);
00109   else{
00110     std::ostringstream errOs;
00111     errOs << "BAD PROTON CROSS SECTION OPTION AT EVAPORATION!!"  <<G4endl;
00112     throw G4HadronicException(__FILE__, __LINE__, errOs.str());
00113     return 0.;
00114   }
00115 }
00116 
00117 //********************* OPT=1 : Chatterjee's cross section *********************
00118 //(fitting to cross section from Bechetti & Greenles OM potential)
00119 
00120 G4double G4ProtonEvaporationProbability::GetOpt1(G4double K)
00121 {
00122   G4double Kc=K; 
00123 
00124   // JMQ  xsec is set constat above limit of validity
00125   if (K > 50*MeV) { Kc = 50*MeV; }
00126 
00127   G4double landa, landa0, landa1, mu, mum0, mu1,nu, nu0, nu1, nu2,xs;
00128   G4double p, p0, p1, p2,Ec,delta,q,r,ji;
00129   
00130   p0 = 15.72;
00131   p1 = 9.65;
00132   p2 = -449.0;
00133   landa0 = 0.00437;
00134   landa1 = -16.58;
00135   mum0 = 244.7;
00136   mu1 = 0.503;
00137   nu0 = 273.1;
00138   nu1 = -182.4;
00139   nu2 = -1.872;  
00140   delta=0.;  
00141 
00142   Ec = 1.44*theZ*ResidualZ/(1.5*ResidualAthrd+delta);
00143   p = p0 + p1/Ec + p2/(Ec*Ec);
00144   landa = landa0*ResidualA + landa1;
00145 
00146   G4double resmu1 = fG4pow->powZ(ResidualA,mu1); 
00147   mu = mum0*resmu1;
00148   nu = resmu1*(nu0 + nu1*Ec + nu2*(Ec*Ec));
00149   q = landa - nu/(Ec*Ec) - 2*p*Ec;
00150   r = mu + 2*nu/Ec + p*(Ec*Ec);
00151 
00152   ji=std::max(Kc,Ec);
00153   if(Kc < Ec) { xs = p*Kc*Kc + q*Kc + r;}
00154   else {xs = p*(Kc - ji)*(Kc - ji) + landa*Kc + mu + nu*(2 - Kc/ji)/ji ;}
00155   if (xs <0.0) {xs=0.0;}
00156 
00157   return xs; 
00158 }
00159 
00160 //************* OPT=2 : Welisch's proton reaction cross section ***************
00161 
00162 G4double G4ProtonEvaporationProbability::GetOpt2(G4double K)
00163 {
00164 
00165   G4double eekin,ekin,ff1,ff2,ff3,r0,fac,fac1,fac2,b0,xine_th(0);
00166  
00167   // This is redundant when the Coulomb  barrier is overimposed to all 
00168   // cross sections 
00169   // It should be kept when Coulomb barrier only imposed at OPTxs=2
00170 
00171   if(!useSICB && K<=theCoulombBarrier.GetCoulombBarrier(ResidualA,ResidualZ,U)) 
00172     { return 0.0; }
00173 
00174   eekin=K;
00175   G4int rnneu=ResidualA-ResidualZ;
00176   ekin=eekin/1000;
00177   r0=1.36*1.e-15;
00178   fac=pi*r0*r0;
00179   b0=2.247-0.915*(1.-1./ResidualAthrd);
00180   fac1=b0*(1.-1./ResidualAthrd);
00181   fac2=1.;
00182   if(rnneu > 1.5) { fac2 = fG4pow->logZ(rnneu); }
00183   xine_th= 1.e+31*fac*fac2*(1.+ResidualAthrd-fac1);
00184   xine_th=(1.-0.15*std::exp(-ekin))*xine_th/(1.00-0.0007*ResidualA);    
00185   ff1=0.70-0.0020*ResidualA;
00186   ff2=1.00+1/G4double(ResidualA);
00187   ff3=0.8+18/G4double(ResidualA)-0.002*ResidualA;
00188   fac=1.-(1./(1.+std::exp(-8.*ff1*(std::log10(ekin)+1.37*ff2))));
00189   xine_th=xine_th*(1.+ff3*fac);
00190   ff1=1.-1/G4double(ResidualA)-0.001*ResidualA;
00191   ff2=1.17-2.7/G4double(ResidualA)-0.0014*ResidualA;
00192   fac=-8.*ff1*(std::log10(ekin)+2.0*ff2);
00193   fac=1./(1.+std::exp(fac));
00194   xine_th=xine_th*fac;            
00195   if (xine_th < 0.0){
00196     std::ostringstream errOs;
00197     G4cout<<"WARNING:  negative Wellisch cross section "<<G4endl; 
00198     errOs << "RESIDUAL: A=" << ResidualA << " Z=" << ResidualZ <<G4endl;
00199     errOs <<"  xsec("<<ekin<<" MeV) ="<<xine_th <<G4endl;
00200     throw G4HadronicException(__FILE__, __LINE__, errOs.str());
00201   }
00202   return xine_th;
00203 }
00204 
00205 // *********** OPT=3 : Kalbach's cross sections (from PRECO code)*************
00206 G4double G4ProtonEvaporationProbability::GetOpt3(const  G4double K)
00207 {
00208   //     ** p from  becchetti and greenlees (but modified with sub-barrier
00209   //     ** correction function and xp2 changed from -449)
00210 
00211   G4double landa, landa0, landa1, mu, mum0, mu1,nu, nu0, nu1, nu2;
00212   G4double p, p0, p1, p2;
00213   p0 = 15.72;
00214   p1 = 9.65;
00215   p2 = -300.;
00216   landa0 = 0.00437;
00217   landa1 = -16.58;
00218   mum0 = 244.7;
00219   mu1 = 0.503;
00220   nu0 = 273.1;
00221   nu1 = -182.4;
00222   nu2 = -1.872;
00223   
00224   // parameters for  proton cross section refinement 
00225   /*
00226   G4double afit,bfit,a2,b2;
00227   afit=-0.0785656;
00228   bfit=5.10789;
00229   a2= -0.00089076;
00230   b2= 0.0231597;  
00231   */
00232   G4double ec,ecsq,xnulam,etest(0.),ra(0.),a,w,c,signor(1.),signor2,sig; 
00233   G4double b,ecut,cut,ecut2,geom,elab;
00234     
00235   G4double      flow = 1.e-18;
00236   G4double       spill= 1.e+18; 
00237    
00238   if (ResidualA <= 60)      { signor = 0.92; }
00239   else if (ResidualA < 100) { signor = 0.8 + ResidualA*0.002; }
00240   
00241   ec = 1.44 * theZ * ResidualZ / (1.5*ResidualAthrd+ra);
00242   ecsq = ec * ec;
00243   p = p0 + p1/ec + p2/ecsq;
00244   landa = landa0*ResidualA + landa1;
00245   a = fG4pow->powZ(ResidualA,mu1);
00246   mu = mum0 * a;
00247   nu = a* (nu0+nu1*ec+nu2*ecsq);
00248   
00249   c =std::min(3.15,ec*0.5);
00250   w = 0.7 * c / 3.15; 
00251   
00252   xnulam = nu / landa;
00253   if (xnulam > spill) { xnulam=0.; }
00254   if (xnulam >= flow) { etest =std::sqrt(xnulam) + 7.; }
00255   
00256   a = -2.*p*ec + landa - nu/ecsq;
00257   b = p*ecsq + mu + 2.*nu/ec;
00258   ecut = 0.;
00259   cut = a*a - 4.*p*b;
00260   if (cut > 0.) { ecut = std::sqrt(cut); }
00261   ecut = (ecut-a) / (p+p);
00262   ecut2 = ecut;
00263   //JMQ 290310 for avoiding unphysical increase below minimum (at ecut)
00264   // ecut<0 means that there is no cut with energy axis, i.e. xs is set 
00265   // to 0 bellow minimum
00266   //  if (cut < 0.) ecut2 = ecut - 2.;
00267   if (cut < 0.) { ecut2 = ecut; }
00268   elab = K * FragmentA /G4double(ResidualA);
00269   sig = 0.;
00270   if (elab <= ec) { //start for E<Ec 
00271     if (elab > ecut2) { sig = (p*elab*elab+a*elab+b) * signor; }
00272     
00273     signor2 = (ec-elab-c) / w;
00274     signor2 = 1. + std::exp(signor2);
00275     sig = sig / signor2;
00276   }              //end for E<=Ec
00277   else{           //start for  E>Ec
00278     sig = (landa*elab+mu+nu/elab) * signor;
00279     geom = 0.;
00280     
00281     if (xnulam < flow || elab < etest) 
00282       {
00283         if (sig <0.0) {sig=0.0;}
00284         return sig;
00285       }
00286     geom = std::sqrt(theA*K);
00287     geom = 1.23*ResidualAthrd + ra + 4.573/geom;
00288     geom = 31.416 * geom * geom;
00289     sig = std::max(geom,sig);
00290     
00291   }   //end for E>Ec
00292   return sig;
00293 }
00294 

Generated on Mon May 27 17:49:27 2013 for Geant4 by  doxygen 1.4.7