G4PreCompoundProton.cc

Go to the documentation of this file.
00001 //
00002 // ********************************************************************
00003 // * License and Disclaimer                                           *
00004 // *                                                                  *
00005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
00006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
00007 // * conditions of the Geant4 Software License,  included in the file *
00008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
00009 // * include a list of copyright holders.                             *
00010 // *                                                                  *
00011 // * Neither the authors of this software system, nor their employing *
00012 // * institutes,nor the agencies providing financial support for this *
00013 // * work  make  any representation or  warranty, express or implied, *
00014 // * regarding  this  software system or assume any liability for its *
00015 // * use.  Please see the license in the file  LICENSE  and URL above *
00016 // * for the full disclaimer and the limitation of liability.         *
00017 // *                                                                  *
00018 // * This  code  implementation is the result of  the  scientific and *
00019 // * technical work of the GEANT4 collaboration.                      *
00020 // * By using,  copying,  modifying or  distributing the software (or *
00021 // * any work based  on the software)  you  agree  to acknowledge its *
00022 // * use  in  resulting  scientific  publications,  and indicate your *
00023 // * acceptance of all terms of the Geant4 Software license.          *
00024 // ********************************************************************
00025 //
00026 // $Id$
00027 //
00028 // -------------------------------------------------------------------
00029 //
00030 // GEANT4 Class file
00031 //
00032 //
00033 // File name:     G4PreCompoundProton
00034 //
00035 // Author:         V.Lara
00036 //
00037 // Modified:  
00038 // 21.08.2008 J. M. Quesada added external choice of inverse cross section option
00039 // 21.08.2008 J. M. Quesada added external choice for superimposed Coulomb 
00040 //                          barrier (if useSICB=true) 
00041 // 20.08.2010 V.Ivanchenko added G4Pow and G4PreCompoundParameters pointers
00042 //                         use int Z and A and cleanup
00043 //
00044 
00045 #include "G4PreCompoundProton.hh"
00046 #include "G4PhysicalConstants.hh"
00047 #include "G4SystemOfUnits.hh"
00048 #include "G4Proton.hh"
00049 
00050 G4PreCompoundProton::G4PreCompoundProton()
00051   : G4PreCompoundNucleon(G4Proton::Proton(), &theProtonCoulombBarrier)
00052 {
00053   ResidualA = GetRestA();
00054   ResidualZ = GetRestZ(); 
00055   theA = GetA();
00056   theZ = GetZ();
00057   ResidualAthrd = ResidualA13();
00058   FragmentAthrd = ResidualAthrd;
00059   FragmentA = theA + ResidualA;
00060 }
00061 
00062 G4PreCompoundProton::~G4PreCompoundProton()
00063 {}
00064 
00065 G4double G4PreCompoundProton::GetRj(G4int nParticles, G4int nCharged)
00066 {
00067   G4double rj = 0.0;
00068   if(nParticles > 0) { 
00069     rj = static_cast<G4double>(nCharged)/static_cast<G4double>(nParticles);
00070   }
00071   return rj;
00072 }
00073 
00075 //J. M. Quesada (Dec 2007-June 2008): New inverse reaction cross sections 
00076 //OPT=0 Dostrovski's parameterization
00077 //OPT=1 Chatterjee's paramaterization 
00078 //OPT=2,4 Wellisch's parametarization
00079 //OPT=3 Kalbach's parameterization 
00080 // 
00081 G4double G4PreCompoundProton::CrossSection(G4double K)
00082 {
00083   ResidualA = GetRestA();
00084   ResidualZ = GetRestZ(); 
00085   theA = GetA();
00086   theZ = GetZ();
00087   ResidualAthrd = ResidualA13();
00088   FragmentA = theA + ResidualA;
00089   FragmentAthrd = g4pow->Z13(FragmentA);
00090 
00091   if (OPTxs==0) { return GetOpt0(K); }
00092   else if( OPTxs==1) { return GetOpt1(K); }
00093   else if( OPTxs==2|| OPTxs==4) { return GetOpt2(K); }
00094   else if (OPTxs==3)  { return GetOpt3(K); }
00095   else{
00096     std::ostringstream errOs;
00097     errOs << "BAD PROTON CROSS SECTION OPTION !!"  <<G4endl;
00098     throw G4HadronicException(__FILE__, __LINE__, errOs.str());
00099     return 0.;
00100   }
00101 }
00102 
00103 G4double G4PreCompoundProton::GetAlpha()
00104 {
00105   G4int aZ = ResidualZ;
00106   G4double C = 0.0;
00107   if (aZ >= 70) 
00108     {
00109       C = 0.10;
00110     } 
00111   else 
00112     {
00113       C = ((((0.15417e-06*aZ) - 0.29875e-04)*aZ + 0.21071e-02)*aZ - 0.66612e-01)*aZ + 0.98375;
00114     }
00115   return 1.0 + C;
00116 }
00117 
00118 G4double G4PreCompoundProton::GetBeta() 
00119 {
00120   return -GetCoulombBarrier();
00121 }
00122   
00123 //********************* OPT=1 : Chatterjee's cross section *********************
00124 //(fitting to cross section from Bechetti & Greenles OM potential)
00125 
00126 G4double G4PreCompoundProton::GetOpt1(G4double K)
00127 {
00128   G4double Kc=K; 
00129 
00130   // JMQ  xsec is set constat above limit of validity
00131   if (K > 50*MeV) { Kc = 50*MeV; }
00132 
00133   G4double landa, landa0, landa1, mu, mm0, mu1,nu, nu0, nu1, nu2,xs;
00134   G4double p, p0, p1, p2,Ec,delta,q,r,ji;
00135   
00136   p0 = 15.72;
00137   p1 = 9.65;
00138   p2 = -449.0;
00139   landa0 = 0.00437;
00140   landa1 = -16.58;
00141   mm0 = 244.7;
00142   mu1 = 0.503;
00143   nu0 = 273.1;
00144   nu1 = -182.4;
00145   nu2 = -1.872;  
00146   delta=0.;  
00147 
00148   Ec = 1.44*theZ*ResidualZ/(1.5*ResidualAthrd+delta);
00149   p = p0 + p1/Ec + p2/(Ec*Ec);
00150   landa = landa0*ResidualA + landa1;
00151 
00152   G4double resmu1 = g4pow->powZ(ResidualA,mu1); 
00153   mu = mm0*resmu1;
00154   nu = resmu1*(nu0 + nu1*Ec + nu2*(Ec*Ec));
00155   q = landa - nu/(Ec*Ec) - 2*p*Ec;
00156   r = mu + 2*nu/Ec + p*(Ec*Ec);
00157 
00158   ji=std::max(Kc,Ec);
00159   if(Kc < Ec) { xs = p*Kc*Kc + q*Kc + r;}
00160   else {xs = p*(Kc - ji)*(Kc - ji) + landa*Kc + mu + nu*(2 - Kc/ji)/ji ;}
00161   if (xs <0.0) {xs=0.0;}
00162 
00163   return xs; 
00164 }
00165 
00166 //************* OPT=2 : Welisch's proton reaction cross section ***************
00167 
00168 G4double G4PreCompoundProton::GetOpt2(G4double K)
00169 {
00170 
00171   G4double eekin,ekin,ff1,ff2,ff3,r0,fac,fac1,fac2,b0,xine_th(0);
00172  
00173   // This is redundant when the Coulomb  barrier is overimposed to all 
00174   // cross sections 
00175   // It should be kept when Coulomb barrier only imposed at OPTxs=2
00176 
00177   if(!useSICB && K<=theCoulombBarrier) { return 0.0; }
00178 
00179   eekin=K;
00180   G4int rnneu=ResidualA-ResidualZ;
00181   ekin=eekin/1000;
00182   r0=1.36*1.e-15;
00183   fac=pi*r0*r0;
00184   b0=2.247-0.915*(1.-1./ResidualAthrd);
00185   fac1=b0*(1.-1./ResidualAthrd);
00186   fac2=1.;
00187   if(rnneu > 1.5) { fac2 = g4pow->logZ(rnneu); }
00188   xine_th= 1.e+31*fac*fac2*(1.+ResidualAthrd-fac1);
00189   xine_th=(1.-0.15*std::exp(-ekin))*xine_th/(1.00-0.0007*ResidualA);    
00190   ff1=0.70-0.0020*ResidualA;
00191   ff2=1.00+1/G4double(ResidualA);
00192   ff3=0.8+18/G4double(ResidualA)-0.002*ResidualA;
00193   fac=1.-(1./(1.+std::exp(-8.*ff1*(std::log10(ekin)+1.37*ff2))));
00194   xine_th=xine_th*(1.+ff3*fac);
00195   ff1=1.-1/G4double(ResidualA)-0.001*ResidualA;
00196   ff2=1.17-2.7/G4double(ResidualA)-0.0014*ResidualA;
00197   fac=-8.*ff1*(std::log10(ekin)+2.0*ff2);
00198   fac=1./(1.+std::exp(fac));
00199   xine_th=xine_th*fac;            
00200   if (xine_th < 0.0){
00201     std::ostringstream errOs;
00202     G4cout<<"WARNING:  negative Wellisch cross section "<<G4endl; 
00203     errOs << "RESIDUAL: A=" << ResidualA << " Z=" << ResidualZ <<G4endl;
00204     errOs <<"  xsec("<<ekin<<" MeV) ="<<xine_th <<G4endl;
00205     throw G4HadronicException(__FILE__, __LINE__, errOs.str());
00206   }
00207   return xine_th;
00208 }
00209 
00210 // *********** OPT=3 : Kalbach's cross sections (from PRECO code)*************
00211 G4double G4PreCompoundProton::GetOpt3(const  G4double K)
00212 {
00213   //     ** p from  becchetti and greenlees (but modified with sub-barrier
00214   //     ** correction function and xp2 changed from -449)
00215 
00216   G4double landa, landa0, landa1, mu, mm0, mu1,nu, nu0, nu1, nu2;
00217   G4double p, p0, p1, p2;
00218   p0 = 15.72;
00219   p1 = 9.65;
00220   p2 = -300.;
00221   landa0 = 0.00437;
00222   landa1 = -16.58;
00223   mm0 = 244.7;
00224   mu1 = 0.503;
00225   nu0 = 273.1;
00226   nu1 = -182.4;
00227   nu2 = -1.872;
00228   
00229   // parameters for  proton cross section refinement 
00230   /*
00231   G4double afit,bfit,a2,b2;
00232   afit=-0.0785656;
00233   bfit=5.10789;
00234   a2= -0.00089076;
00235   b2= 0.0231597;  
00236   */
00237 
00238   G4double ec,ecsq,xnulam,etest(0.),ra(0.),a,w,c,signor(1.),signor2,sig; 
00239   G4double b,ecut,cut,ecut2,geom,elab;
00240     
00241   G4double      flow = 1.e-18;
00242   G4double       spill= 1.e+18; 
00243    
00244   if (ResidualA <= 60)      { signor = 0.92; }
00245   else if (ResidualA < 100) { signor = 0.8 + ResidualA*0.002; }
00246   
00247   ec = 1.44 * theZ * ResidualZ / (1.5*ResidualAthrd+ra);
00248   ecsq = ec * ec;
00249   p = p0 + p1/ec + p2/ecsq;
00250   landa = landa0*ResidualA + landa1;
00251   a = g4pow->powZ(ResidualA,mu1);
00252   mu = mm0 * a;
00253   nu = a* (nu0+nu1*ec+nu2*ecsq);
00254   
00255   c =std::min(3.15,ec*0.5);
00256   w = 0.7 * c / 3.15; 
00257   
00258   xnulam = nu / landa;
00259   if (xnulam > spill) { xnulam=0.; }
00260   if (xnulam >= flow) { etest =std::sqrt(xnulam) + 7.; }
00261   
00262   a = -2.*p*ec + landa - nu/ecsq;
00263   b = p*ecsq + mu + 2.*nu/ec;
00264   ecut = 0.;
00265   cut = a*a - 4.*p*b;
00266   if (cut > 0.) { ecut = std::sqrt(cut); }
00267   ecut = (ecut-a) / (p+p);
00268   ecut2 = ecut;
00269   //JMQ 290310 for avoiding unphysical increase below minimum (at ecut)
00270   // ecut<0 means that there is no cut with energy axis, i.e. xs is set 
00271   // to 0 bellow minimum
00272   //  if (cut < 0.) ecut2 = ecut - 2.;
00273   if (cut < 0.) { ecut2 = ecut; }
00274   elab = K * FragmentA /G4double(ResidualA);
00275   sig = 0.;
00276   if (elab <= ec) { //start for E<Ec 
00277     if (elab > ecut2) { sig = (p*elab*elab+a*elab+b) * signor; }
00278     
00279     signor2 = (ec-elab-c) / w;
00280     signor2 = 1. + std::exp(signor2);
00281     sig = sig / signor2;
00282   }              //end for E<=Ec
00283   else{           //start for  E>Ec
00284     sig = (landa*elab+mu+nu/elab) * signor;
00285     geom = 0.;
00286     
00287     if (xnulam < flow || elab < etest) 
00288       {
00289         if (sig <0.0) {sig=0.0;}
00290         return sig;
00291       }
00292     geom = std::sqrt(theA*K);
00293     geom = 1.23*ResidualAthrd + ra + 4.573/geom;
00294     geom = 31.416 * geom * geom;
00295     sig = std::max(geom,sig);
00296     
00297   }   //end for E>Ec
00298   return sig;
00299 }

Generated on Mon May 27 17:49:25 2013 for Geant4 by  doxygen 1.4.7