G4LETritonInelastic.cc

Go to the documentation of this file.
00001 //
00002 // ********************************************************************
00003 // * License and Disclaimer                                           *
00004 // *                                                                  *
00005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
00006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
00007 // * conditions of the Geant4 Software License,  included in the file *
00008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
00009 // * include a list of copyright holders.                             *
00010 // *                                                                  *
00011 // * Neither the authors of this software system, nor their employing *
00012 // * institutes,nor the agencies providing financial support for this *
00013 // * work  make  any representation or  warranty, express or implied, *
00014 // * regarding  this  software system or assume any liability for its *
00015 // * use.  Please see the license in the file  LICENSE  and URL above *
00016 // * for the full disclaimer and the limitation of liability.         *
00017 // *                                                                  *
00018 // * This  code  implementation is the result of  the  scientific and *
00019 // * technical work of the GEANT4 collaboration.                      *
00020 // * By using,  copying,  modifying or  distributing the software (or *
00021 // * any work based  on the software)  you  agree  to acknowledge its *
00022 // * use  in  resulting  scientific  publications,  and indicate your *
00023 // * acceptance of all terms of the Geant4 Software license.          *
00024 // ********************************************************************
00025 //
00026 // Hadronic Process: Triton Inelastic Process
00027 // J.L. Chuma, TRIUMF, 25-Feb-1997
00028 // J.L. Chuma, 08-May-2001: Update original incident passed back in vec[0]
00029 //                          from NuclearReaction
00030 
00031 #include "G4LETritonInelastic.hh"
00032 #include "G4SystemOfUnits.hh"
00033 #include "Randomize.hh"
00034 #include "G4Electron.hh"
00035 
00036 void G4LETritonInelastic::ModelDescription(std::ostream& outFile) const
00037 {
00038   outFile << "G4LETritonInelastic is one of the Low Energy Parameterized\n"
00039           << "(LEP) models used to implement inelastic triton scattering\n"
00040           << "from nuclei.  It is a re-engineered version of the GHEISHA\n"
00041           << "code of H. Fesefeldt.  It divides the initial collision\n"
00042           << "products into backward- and forward-going clusters which are\n"
00043           << "then decayed into final state hadrons.  The model does not\n"
00044           << "conserve energy on an event-by-event basis.  It may be\n"
00045           << "applied to tritons with initial energies between 0 and 25\n"
00046           << "GeV.\n";
00047 }
00048 
00049 
00050 G4HadFinalState*
00051 G4LETritonInelastic::ApplyYourself(const G4HadProjectile& aTrack,
00052                                    G4Nucleus& targetNucleus)
00053 {
00054   G4bool triton_debug = false;
00055   if (getenv("TritonLEDebug")) triton_debug = true;
00056   theParticleChange.Clear();
00057   const G4HadProjectile *originalIncident = &aTrack;
00058   if (triton_debug) G4cout << "entering LETritonInelastic "
00059                            << originalIncident->GetKineticEnergy() << G4endl;
00060   if (originalIncident->GetKineticEnergy() <= 0.1*MeV) {
00061     theParticleChange.SetStatusChange(isAlive);
00062     theParticleChange.SetEnergyChange(aTrack.GetKineticEnergy());
00063     theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); 
00064     return &theParticleChange;      
00065   }
00066     
00067   if (verboseLevel > 1) {
00068     const G4Material *targetMaterial = aTrack.GetMaterial();
00069     G4cout << "G4LETritonInelastic::ApplyYourself called" << G4endl;
00070     G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
00071     G4cout << "target material = " << targetMaterial->GetName() << ", ";
00072   }
00073     
00074   if (triton_debug) G4cout << "running LETritonInelastic 1" << G4endl;
00075 
00076   // Work-around for lack of model above 100 MeV
00077   if (originalIncident->GetKineticEnergy()/MeV > 100. ||
00078       originalIncident->GetKineticEnergy() <= 0.) {
00079     theParticleChange.SetStatusChange(isAlive);
00080     theParticleChange.SetEnergyChange(aTrack.GetKineticEnergy());
00081     theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
00082     return &theParticleChange;
00083   }
00084 
00085   if (triton_debug) G4cout << "running LETritonInelastic 2" << G4endl;
00086 
00087   G4double A = targetNucleus.GetA_asInt();
00088   G4double Z = targetNucleus.GetZ_asInt();
00089   G4double theAtomicMass = targetNucleus.AtomicMass(A, Z);
00090   G4double massVec[9];
00091   massVec[0] = targetNucleus.AtomicMass( A+3.0, Z+1.0 );
00092   massVec[1] = targetNucleus.AtomicMass( A+2.0, Z+1.0 );
00093   massVec[2] = targetNucleus.AtomicMass( A+2.0, Z     );
00094   massVec[3] = targetNucleus.AtomicMass( A+1.0, Z     );
00095   massVec[4] = theAtomicMass;
00096   massVec[5] = massVec[3]; //0.;
00097   if (A > 1.0 && Z > 1.0) massVec[5] = targetNucleus.AtomicMass(A-1.0, Z-1.0);
00098   massVec[6] = targetNucleus.AtomicMass(A+1.0, Z+1.0);
00099   massVec[7] = massVec[3];
00100   massVec[8] = massVec[2]; //0.;
00101   if (Z > 1.0) massVec[8] = targetNucleus.AtomicMass(A+1.0, Z-1.0);
00102     
00103   G4FastVector<G4ReactionProduct,4> vec;  // vec will contain the secondary particles
00104   G4int vecLen = 0;
00105   vec.Initialize(0);
00106     
00107   if (triton_debug) G4cout << "running LETritonInelastic 3" << G4endl;
00108   theReactionDynamics.NuclearReaction(vec, vecLen, originalIncident,
00109                                       targetNucleus, theAtomicMass, massVec);
00110   if (triton_debug) G4cout << "running LETritonInelastic 4" << G4endl;
00111 
00112   G4double p = vec[0]->GetMomentum().mag();
00113   theParticleChange.SetMomentumChange( vec[0]->GetMomentum()*(1./p) );
00114   theParticleChange.SetEnergyChange( vec[0]->GetKineticEnergy() );
00115   delete vec[0];
00116 
00117   if (vecLen <= 1) {
00118     theParticleChange.SetStatusChange(isAlive);
00119     theParticleChange.SetEnergyChange(aTrack.GetKineticEnergy());
00120     theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
00121     if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
00122     return &theParticleChange;
00123   }
00124 
00125   G4DynamicParticle *pd;
00126   for (G4int i = 1; i < vecLen; ++i) {
00127     pd = new G4DynamicParticle();
00128     pd->SetDefinition( vec[i]->GetDefinition() );
00129     pd->SetMomentum( vec[i]->GetMomentum() );
00130     theParticleChange.AddSecondary( pd );
00131     delete vec[i];
00132   }
00133 
00134   if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
00135 
00136   if (triton_debug) G4cout << "leaving LETritonInelastic" << G4endl;
00137   return &theParticleChange;
00138 }
00139  
00140  /* end of file */
00141  

Generated on Mon May 27 17:48:46 2013 for Geant4 by  doxygen 1.4.7