G4LESigmaMinusInelastic.cc

Go to the documentation of this file.
00001 //
00002 // ********************************************************************
00003 // * License and Disclaimer                                           *
00004 // *                                                                  *
00005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
00006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
00007 // * conditions of the Geant4 Software License,  included in the file *
00008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
00009 // * include a list of copyright holders.                             *
00010 // *                                                                  *
00011 // * Neither the authors of this software system, nor their employing *
00012 // * institutes,nor the agencies providing financial support for this *
00013 // * work  make  any representation or  warranty, express or implied, *
00014 // * regarding  this  software system or assume any liability for its *
00015 // * use.  Please see the license in the file  LICENSE  and URL above *
00016 // * for the full disclaimer and the limitation of liability.         *
00017 // *                                                                  *
00018 // * This  code  implementation is the result of  the  scientific and *
00019 // * technical work of the GEANT4 collaboration.                      *
00020 // * By using,  copying,  modifying or  distributing the software (or *
00021 // * any work based  on the software)  you  agree  to acknowledge its *
00022 // * use  in  resulting  scientific  publications,  and indicate your *
00023 // * acceptance of all terms of the Geant4 Software license.          *
00024 // ********************************************************************
00025 //
00026 // $Id$
00027 //
00028 // Hadronic Process: SigmaMinus Inelastic Process
00029 // J.L. Chuma, TRIUMF, 19-Feb-1997
00030 // Modified by J.L.Chuma 30-Apr-97: added originalTarget for CalculateMomenta
00031  
00032 #include "G4LESigmaMinusInelastic.hh"
00033 #include "G4PhysicalConstants.hh"
00034 #include "G4SystemOfUnits.hh"
00035 #include "Randomize.hh"
00036 
00037 void G4LESigmaMinusInelastic::ModelDescription(std::ostream& outFile) const
00038 {
00039   outFile << "G4LESigmaMinusInelastic is one of the Low Energy Parameterized\n"
00040           << "(LEP) models used to implement inelastic Sigma- scattering\n"
00041           << "from nuclei.  It is a re-engineered version of the GHEISHA\n"
00042           << "code of H. Fesefeldt.  It divides the initial collision\n"
00043           << "products into backward- and forward-going clusters which are\n"
00044           << "then decayed into final state hadrons.  The model does not\n"
00045           << "conserve energy on an event-by-event basis.  It may be\n"
00046           << "applied to Sigma- with initial energies between 0 and 25\n"
00047           << "GeV.\n";
00048 }
00049 
00050 G4HadFinalState*
00051 G4LESigmaMinusInelastic::ApplyYourself(const G4HadProjectile& aTrack,
00052                                        G4Nucleus& targetNucleus)
00053 {
00054   const G4HadProjectile *originalIncident = &aTrack;
00055   if (originalIncident->GetKineticEnergy()<= 0.1*MeV) {
00056     theParticleChange.SetStatusChange(isAlive);
00057     theParticleChange.SetEnergyChange(aTrack.GetKineticEnergy());
00058     theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); 
00059     return &theParticleChange;      
00060   }
00061 
00062   // create the target particle
00063   G4DynamicParticle* originalTarget = targetNucleus.ReturnTargetParticle();
00064     
00065   if (verboseLevel > 1) {
00066     const G4Material *targetMaterial = aTrack.GetMaterial();
00067     G4cout << "G4LESigmaMinusInelastic::ApplyYourself called" << G4endl;
00068     G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
00069     G4cout << "target material = " << targetMaterial->GetName() << ", ";
00070     G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
00071            << G4endl;
00072   }
00073 
00074   // Fermi motion and evaporation
00075   // As of Geant3, the Fermi energy calculation had not been Done
00076   G4double ek = originalIncident->GetKineticEnergy()/MeV;
00077   G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
00078   G4ReactionProduct modifiedOriginal;
00079   modifiedOriginal = *originalIncident;
00080     
00081   G4double tkin = targetNucleus.Cinema(ek);
00082   ek += tkin;
00083   modifiedOriginal.SetKineticEnergy(ek*MeV);
00084   G4double et = ek + amas;
00085   G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
00086   G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
00087   if (pp > 0.0) {
00088     G4ThreeVector momentum = modifiedOriginal.GetMomentum();
00089     modifiedOriginal.SetMomentum(momentum * (p/pp) );
00090   }
00091 
00092   // calculate black track energies
00093   tkin = targetNucleus.EvaporationEffects(ek);
00094   ek -= tkin;
00095   modifiedOriginal.SetKineticEnergy(ek*MeV);
00096   et = ek + amas;
00097   p = std::sqrt( std::abs((et-amas)*(et+amas)) );
00098   pp = modifiedOriginal.GetMomentum().mag()/MeV;
00099   if (pp > 0.0) {
00100     G4ThreeVector momentum = modifiedOriginal.GetMomentum();
00101     modifiedOriginal.SetMomentum( momentum * (p/pp) );
00102   }
00103   G4ReactionProduct currentParticle = modifiedOriginal;
00104   G4ReactionProduct targetParticle;
00105   targetParticle = *originalTarget;
00106   currentParticle.SetSide(1); // incident always goes in forward hemisphere
00107   targetParticle.SetSide(-1);  // target always goes in backward hemisphere
00108   G4bool incidentHasChanged = false;
00109   G4bool targetHasChanged = false;
00110   G4bool quasiElastic = false;
00111   G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec;  // vec will contain the secondary particles
00112   G4int vecLen = 0;
00113   vec.Initialize(0);
00114     
00115   const G4double cutOff = 0.1;
00116   if (originalIncident->GetKineticEnergy()/MeV > cutOff)
00117     Cascade(vec, vecLen, originalIncident, currentParticle, targetParticle,
00118             incidentHasChanged, targetHasChanged, quasiElastic);
00119     
00120   CalculateMomenta(vec, vecLen, originalIncident, originalTarget,
00121                    modifiedOriginal, targetNucleus, currentParticle,
00122                    targetParticle, incidentHasChanged, targetHasChanged,
00123                    quasiElastic);
00124     
00125   SetUpChange(vec, vecLen, currentParticle, targetParticle, incidentHasChanged);
00126 
00127   if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
00128 
00129   delete originalTarget;
00130   return &theParticleChange;
00131 }
00132 
00133  
00134 void G4LESigmaMinusInelastic::Cascade(
00135    G4FastVector<G4ReactionProduct,GHADLISTSIZE> &vec,
00136    G4int& vecLen,
00137    const G4HadProjectile *originalIncident,
00138    G4ReactionProduct &currentParticle,
00139    G4ReactionProduct &targetParticle,
00140    G4bool &incidentHasChanged,
00141    G4bool &targetHasChanged,
00142    G4bool &quasiElastic )
00143 {
00144     // derived from original FORTRAN code CASSM by H. Fesefeldt (13-Sep-1987)
00145     //
00146     // SigmaMinus undergoes interaction with nucleon within a nucleus.  Check if it is
00147     // energetically possible to produce pions/kaons.  In not, assume nuclear excitation
00148     // occurs and input particle is degraded in energy. No other particles are produced.
00149     // If reaction is possible, find the correct number of pions/protons/neutrons
00150     // produced using an interpolation to multiplicity data.  Replace some pions or
00151     // protons/neutrons by kaons or strange baryons according to the average
00152     // multiplicity per Inelastic reaction.
00153     //
00154     const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
00155     const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
00156     const G4double targetMass = targetParticle.GetMass()/MeV;
00157     G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
00158                                         targetMass*targetMass +
00159                                         2.0*targetMass*etOriginal );
00160     G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
00161     if( availableEnergy <= G4PionPlus::PionPlus()->GetPDGMass()/MeV )
00162     {
00163       quasiElastic = true;
00164       return;
00165     }
00166     static G4bool first = true;
00167     const G4int numMul = 1200;
00168     const G4int numSec = 60;
00169     static G4double protmul[numMul], protnorm[numSec]; // proton constants
00170     static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
00171     // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
00172     G4int counter, nt=0, npos=0, nneg=0, nzero=0;
00173     G4double test;
00174     const G4double c = 1.25;    
00175     const G4double b[] = { 0.70, 0.70 };
00176     if( first )     // compute normalization constants, this will only be Done once
00177     {
00178       first = false;
00179       G4int i;
00180       for( i=0; i<numMul; ++i )protmul[i] = 0.0;
00181       for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
00182       counter = -1;
00183       for( npos=0; npos<(numSec/3); ++npos )
00184       {
00185         for( nneg=std::max(0,npos-1); nneg<=(npos+1); ++nneg )
00186         {
00187           for( nzero=0; nzero<numSec/3; ++nzero )
00188           {
00189             if( ++counter < numMul )
00190             {
00191               nt = npos+nneg+nzero;
00192               if( nt>0 && nt<=numSec )
00193               {
00194                 protmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[0],c);
00195                 protnorm[nt-1] += protmul[counter];
00196               }
00197             }
00198           }
00199         }
00200       }
00201       for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
00202       for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
00203       counter = -1;
00204       for( npos=0; npos<numSec/3; ++npos )
00205       {
00206         for( nneg=npos; nneg<=(npos+2); ++nneg )
00207         {
00208           for( nzero=0; nzero<numSec/3; ++nzero )
00209           {
00210             if( ++counter < numMul )
00211             {
00212               nt = npos+nneg+nzero;
00213               if( nt>0 && nt<=numSec )
00214               {
00215                 neutmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[1],c);
00216                 neutnorm[nt-1] += neutmul[counter];
00217               }
00218             }
00219           }
00220         }
00221       }
00222       for( i=0; i<numSec; ++i )
00223       {
00224         if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
00225         if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
00226       }
00227     }   // end of initialization
00228     
00229     const G4double expxu = 82.;           // upper bound for arg. of exp
00230     const G4double expxl = -expxu;        // lower bound for arg. of exp
00231     G4ParticleDefinition *aNeutron = G4Neutron::Neutron();
00232     G4ParticleDefinition *aProton = G4Proton::Proton();
00233     G4ParticleDefinition *aLambda = G4Lambda::Lambda();
00234     G4ParticleDefinition *aSigmaZero = G4SigmaZero::SigmaZero();
00235     
00236     // energetically possible to produce pion(s)  -->  inelastic scattering
00237     
00238     G4double n, anpn;
00239     GetNormalizationConstant( availableEnergy, n, anpn );
00240     G4double ran = G4UniformRand();
00241     G4double dum, excs = 0.0;
00242     if( targetParticle.GetDefinition() == aProton )
00243     {
00244       counter = -1;
00245       for( npos=0; npos<numSec/3 && ran>=excs; ++npos )
00246       {
00247         for( nneg=std::max(0,npos-1); nneg<=(npos+1) && ran>=excs; ++nneg )
00248         {
00249           for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
00250           {
00251             if( ++counter < numMul )
00252             {
00253               nt = npos+nneg+nzero;
00254               if( nt>0 && nt<=numSec )
00255               {
00256                 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
00257                 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
00258                 if( std::fabs(dum) < 1.0 )
00259                 {
00260                   if( test >= 1.0e-10 )excs += dum*test;
00261                 }
00262                 else
00263                   excs += dum*test;
00264               }
00265             }
00266           }
00267         }
00268       }
00269       if( ran >= excs )  // 3 previous loops continued to the end
00270       {
00271         quasiElastic = true;
00272         return;
00273       }
00274       npos--; nneg--; nzero--;
00275       G4int ncht = std::max( 1, npos-nneg+2 );
00276       switch( ncht )
00277       {
00278        case 1:
00279          if( G4UniformRand() < 0.5 )
00280            currentParticle.SetDefinitionAndUpdateE( aLambda );
00281          else
00282            currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
00283          incidentHasChanged = true;
00284          break;
00285        case 2:
00286          if( G4UniformRand() >= 0.5 )
00287          {
00288            if( G4UniformRand() < 0.5 )
00289              currentParticle.SetDefinitionAndUpdateE( aLambda );
00290            else
00291              currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
00292            incidentHasChanged = true;
00293            targetParticle.SetDefinitionAndUpdateE( aNeutron );
00294            targetHasChanged = true;
00295          }             
00296          break;
00297        default:
00298          targetParticle.SetDefinitionAndUpdateE( aNeutron );
00299          targetHasChanged = true;
00300          break;
00301       }
00302     }
00303     else  // target must be a neutron
00304     {
00305       counter = -1;
00306       for( npos=0; npos<numSec/3 && ran>=excs; ++npos )
00307       {
00308         for( nneg=npos; nneg<=(npos+2) && ran>=excs; ++nneg )
00309         {
00310           for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
00311           {
00312             if( ++counter < numMul )
00313             {
00314               nt = npos+nneg+nzero;
00315               if( nt>0 && nt<=numSec )
00316               {
00317                 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
00318                 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
00319                 if( std::fabs(dum) < 1.0 )
00320                 {
00321                   if( test >= 1.0e-10 )excs += dum*test;
00322                 }
00323                 else
00324                   excs += dum*test;
00325               }
00326             }
00327           }
00328         }
00329       }
00330       if( ran >= excs )  // 3 previous loops continued to the end
00331       {
00332         quasiElastic = true;
00333         return;
00334       }
00335       npos--; nneg--; nzero--;
00336       G4int ncht = std::max( 1, npos-nneg+3 );
00337       switch( ncht )
00338       {
00339        case 1:
00340          if( G4UniformRand() < 0.5 )
00341            currentParticle.SetDefinitionAndUpdateE( aLambda );
00342          else
00343            currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
00344          incidentHasChanged = true;
00345          targetParticle.SetDefinitionAndUpdateE( aProton );
00346          targetHasChanged = true;
00347          break;
00348        case 2:
00349          if( G4UniformRand() < 0.5 )
00350          {
00351            if( G4UniformRand() < 0.5 )
00352              currentParticle.SetDefinitionAndUpdateE( aLambda );
00353            else
00354              currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
00355            incidentHasChanged = true;
00356          }
00357          else
00358          {
00359            targetParticle.SetDefinitionAndUpdateE( aProton );
00360            targetHasChanged = true;
00361          }
00362          break;
00363        default:
00364          break;
00365       }
00366     }
00367     SetUpPions( npos, nneg, nzero, vec, vecLen );
00368     return;
00369 }
00370 
00371  /* end of file */
00372  

Generated on Mon May 27 17:48:46 2013 for Geant4 by  doxygen 1.4.7