G4LEKaonPlusInelastic.cc

Go to the documentation of this file.
00001 //
00002 // ********************************************************************
00003 // * License and Disclaimer                                           *
00004 // *                                                                  *
00005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
00006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
00007 // * conditions of the Geant4 Software License,  included in the file *
00008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
00009 // * include a list of copyright holders.                             *
00010 // *                                                                  *
00011 // * Neither the authors of this software system, nor their employing *
00012 // * institutes,nor the agencies providing financial support for this *
00013 // * work  make  any representation or  warranty, express or implied, *
00014 // * regarding  this  software system or assume any liability for its *
00015 // * use.  Please see the license in the file  LICENSE  and URL above *
00016 // * for the full disclaimer and the limitation of liability.         *
00017 // *                                                                  *
00018 // * This  code  implementation is the result of  the  scientific and *
00019 // * technical work of the GEANT4 collaboration.                      *
00020 // * By using,  copying,  modifying or  distributing the software (or *
00021 // * any work based  on the software)  you  agree  to acknowledge its *
00022 // * use  in  resulting  scientific  publications,  and indicate your *
00023 // * acceptance of all terms of the Geant4 Software license.          *
00024 // ********************************************************************
00025 //
00026 // $Id$
00027 //
00028 // Hadronic Process: Low Energy KaonPlus Inelastic Process
00029 // J.L. Chuma, TRIUMF, 05-Feb-1997
00030 // Modified by J.L.Chuma 30-Apr-97: added originalTarget for CalculateMomenta
00031 
00032 #include <iostream>
00033  
00034 #include "G4LEKaonPlusInelastic.hh"
00035 #include "G4PhysicalConstants.hh"
00036 #include "G4SystemOfUnits.hh"
00037 #include "Randomize.hh"
00038 
00039 G4LEKaonPlusInelastic::G4LEKaonPlusInelastic(const G4String& name)
00040  :G4InelasticInteraction(name)
00041 {
00042   SetMinEnergy(0.0);
00043   SetMaxEnergy(25.*GeV);
00044   G4cout << "WARNING: model G4LEKaonPlusInelastic is being deprecated and will\n"
00045          << "disappear in Geant4 version 10.0"  << G4endl;
00046 }
00047 
00048 
00049 void G4LEKaonPlusInelastic::ModelDescription(std::ostream& outFile) const
00050 {
00051   outFile << "G4LEKaonPlusInelastic is one of the Low Energy Parameterized\n"
00052           << "(LEP) models used to implement inelastic K+ scattering\n"
00053           << "from nuclei.  It is a re-engineered version of the GHEISHA\n"
00054           << "code of H. Fesefeldt.  It divides the initial collision\n"
00055           << "products into backward- and forward-going clusters which are\n"
00056           << "then decayed into final state hadrons.  The model does not\n"
00057           << "conserve energy on an event-by-event basis.  It may be\n"
00058           << "applied to kaons with initial energies between 0 and 25\n"
00059           << "GeV.\n";
00060 }
00061 
00062 
00063 G4HadFinalState*
00064 G4LEKaonPlusInelastic::ApplyYourself(const G4HadProjectile& aTrack,
00065                                      G4Nucleus& targetNucleus)
00066 {
00067   const G4HadProjectile *originalIncident = &aTrack;
00068   if (originalIncident->GetKineticEnergy()<= 0.1*MeV) {
00069     theParticleChange.SetStatusChange(isAlive);
00070     theParticleChange.SetEnergyChange(aTrack.GetKineticEnergy());
00071     theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); 
00072     return &theParticleChange;      
00073   }
00074     
00075   // create the target particle
00076   G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
00077   G4ReactionProduct targetParticle( originalTarget->GetDefinition() );
00078     
00079   if (verboseLevel > 1) {
00080     const G4Material *targetMaterial = aTrack.GetMaterial();
00081     G4cout << "G4LEKaonPlusInelastic::ApplyYourself called" << G4endl;
00082     G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy() << "MeV, ";
00083     G4cout << "target material = " << targetMaterial->GetName() << ", ";
00084     G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
00085            << G4endl;
00086   }    
00087   G4ReactionProduct currentParticle( const_cast<G4ParticleDefinition *>(originalIncident->GetDefinition()));
00088   currentParticle.SetMomentum( originalIncident->Get4Momentum().vect() );
00089   currentParticle.SetKineticEnergy( originalIncident->GetKineticEnergy() );
00090     
00091   // Fermi motion and evaporation
00092   // As of Geant3, the Fermi energy calculation had not been done  
00093   G4double ek = originalIncident->GetKineticEnergy();
00094   G4double amas = originalIncident->GetDefinition()->GetPDGMass();
00095     
00096   G4double tkin = targetNucleus.Cinema(ek);
00097   ek += tkin;
00098   currentParticle.SetKineticEnergy( ek );
00099   G4double et = ek + amas;
00100   G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
00101   G4double pp = currentParticle.GetMomentum().mag();
00102   if (pp > 0.0) {
00103     G4ThreeVector momentum = currentParticle.GetMomentum();
00104     currentParticle.SetMomentum( momentum * (p/pp) );
00105   }
00106     
00107   // calculate black track energies  
00108   tkin = targetNucleus.EvaporationEffects( ek );
00109   ek -= tkin;
00110   currentParticle.SetKineticEnergy( ek );
00111   et = ek + amas;
00112   p = std::sqrt( std::abs((et-amas)*(et+amas)) );
00113   pp = currentParticle.GetMomentum().mag();
00114   if (pp > 0.0) {
00115     G4ThreeVector momentum = currentParticle.GetMomentum();
00116     currentParticle.SetMomentum( momentum * (p/pp) );
00117   }
00118     
00119   G4ReactionProduct modifiedOriginal = currentParticle;
00120     
00121   currentParticle.SetSide(1); // incident always goes in forward hemisphere
00122   targetParticle.SetSide(-1);  // target always goes in backward hemisphere
00123   G4bool incidentHasChanged = false;
00124   G4bool targetHasChanged = false;
00125   G4bool quasiElastic = false;
00126   G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec;  // vec will contain the secondary particles
00127   G4int vecLen = 0;
00128   vec.Initialize( 0 );
00129         
00130   const G4double cutOff = 0.1*MeV;
00131   if (currentParticle.GetKineticEnergy() > cutOff)
00132     Cascade(vec, vecLen, originalIncident, currentParticle,
00133             targetParticle, incidentHasChanged, targetHasChanged,
00134             quasiElastic);
00135     
00136   CalculateMomenta(vec, vecLen, originalIncident, originalTarget,
00137                    modifiedOriginal, targetNucleus, currentParticle,
00138                    targetParticle, incidentHasChanged, targetHasChanged,
00139                    quasiElastic);
00140     
00141   SetUpChange(vec, vecLen, currentParticle, targetParticle, incidentHasChanged);
00142 
00143   if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
00144 
00145   delete originalTarget;  
00146   return &theParticleChange;    
00147 }
00148 
00149 
00150 void G4LEKaonPlusInelastic::Cascade(
00151    G4FastVector<G4ReactionProduct,GHADLISTSIZE> &vec,
00152    G4int &vecLen,
00153    const G4HadProjectile *originalIncident,
00154    G4ReactionProduct &currentParticle,
00155    G4ReactionProduct &targetParticle,
00156    G4bool &incidentHasChanged,
00157    G4bool &targetHasChanged,
00158    G4bool &quasiElastic)
00159 {
00160     // derived from original FORTRAN code CASKP by H. Fesefeldt (13-Sep-1987)
00161     //
00162     // K+ undergoes interaction with nucleon within a nucleus.  Check if it is
00163     // energetically possible to produce pions/kaons.  In not, assume nuclear excitation
00164     // occurs and input particle is degraded in energy. No other particles are produced.
00165     // If reaction is possible, find the correct number of pions/protons/neutrons
00166     // produced using an interpolation to multiplicity data.  Replace some pions or
00167     // protons/neutrons by kaons or strange baryons according to the average
00168     // multiplicity per Inelastic reaction.
00169     //
00170     const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass();
00171     const G4double etOriginal = originalIncident->GetTotalEnergy();
00172     const G4double targetMass = targetParticle.GetMass();
00173     G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
00174                                         targetMass*targetMass +
00175                                         2.0*targetMass*etOriginal );
00176     G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
00177     if( availableEnergy < G4PionPlus::PionPlus()->GetPDGMass() )
00178     {
00179       quasiElastic = true;
00180       return;
00181     }
00182     static G4bool first = true;
00183     const G4int numMul = 1200;
00184     const G4int numSec = 60;
00185     static G4double protmul[numMul], protnorm[numSec]; // proton constants
00186     static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
00187     // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
00188     G4int nt=0, npos=0, nneg=0, nzero=0;
00189     const G4double c = 1.25;    
00190     const G4double b[] = { 0.70, 0.70 };
00191     if( first )       // compute normalization constants, this will only be Done once
00192     {
00193       first = false;
00194       G4int i;
00195       for( i=0; i<numMul; ++i )protmul[i] = 0.0;
00196       for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
00197       G4int counter = -1;
00198       for( npos=0; npos<(numSec/3); ++npos )
00199       {
00200         for( nneg=std::max(0,npos-2); nneg<=npos; ++nneg )
00201         {
00202           for( nzero=0; nzero<numSec/3; ++nzero )
00203           {
00204             if( ++counter < numMul )
00205             {
00206               nt = npos+nneg+nzero;
00207               if( nt > 0 )
00208               {
00209                 protmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[0],c);
00210                 protnorm[nt-1] += protmul[counter];
00211               }
00212             }
00213           }
00214         }
00215       }
00216       for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
00217       for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
00218       counter = -1;
00219       for( npos=0; npos<numSec/3; ++npos )
00220       {
00221         for( nneg=std::max(0,npos-1); nneg<=(npos+1); ++nneg )
00222         {
00223           for( nzero=0; nzero<numSec/3; ++nzero )
00224           {
00225             if( ++counter < numMul )
00226             {
00227               nt = npos+nneg+nzero;
00228               if( (nt>0) && (nt<=numSec) )
00229               {
00230                 neutmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[1],c);
00231                 neutnorm[nt-1] += neutmul[counter];
00232               }
00233             }
00234           }
00235         }
00236       }
00237       for( i=0; i<numSec; ++i )
00238       {
00239         if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
00240         if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
00241       }
00242     }   // end of initialization
00243         
00244     const G4double expxu = 82.;           // upper bound for arg. of exp
00245     const G4double expxl = -expxu;        // lower bound for arg. of exp
00246     G4ParticleDefinition *aKaonZS = G4KaonZeroShort::KaonZeroShort();
00247     G4ParticleDefinition *aKaonZL = G4KaonZeroLong::KaonZeroLong();
00248     G4ParticleDefinition *aNeutron = G4Neutron::Neutron();
00249     G4ParticleDefinition *aProton = G4Proton::Proton();
00250     G4int ieab = static_cast<G4int>(availableEnergy*5.0/GeV);
00251     const G4double supp[] = {0.,0.4,0.55,0.65,0.75,0.82,0.86,0.90,0.94,0.98};
00252     G4double test, w0, wp, wt, wm;
00253     if( (availableEnergy < 2.0*GeV) && (G4UniformRand() >= supp[ieab]) )
00254     {
00255       // suppress high multiplicity events at low momentum
00256       // only one pion will be produced
00257       
00258       nneg = npos = nzero = 0;
00259       if( targetParticle.GetDefinition() == aProton )
00260       {
00261         test = std::exp( std::min( expxu, std::max( expxl, -sqr(1.0+b[0])/(2.0*c*c) ) ) );
00262         w0 = test;
00263         wp = test*2.0;        
00264         if( G4UniformRand() < w0/(w0+wp) )
00265           nzero = 1;
00266         else
00267           npos = 1;
00268       }
00269       else  // target is a neutron
00270       {
00271         test = std::exp( std::min( expxu, std::max( expxl, -sqr(1.0+b[1])/(2.0*c*c) ) ) );
00272         w0 = test;
00273         wp = test;
00274         test = std::exp( std::min( expxu, std::max( expxl, -sqr(-1.0+b[1])/(2.0*c*c) ) ) );
00275         wm = test;
00276         wt = w0+wp+wm;
00277         wp += w0;
00278         G4double ran = G4UniformRand();
00279         if( ran < w0/wt )
00280           nzero = 1;
00281         else if( ran < wp/wt )
00282           npos = 1;
00283         else
00284           nneg = 1;
00285       }
00286     }
00287     else
00288     {
00289       G4double n, anpn;
00290       GetNormalizationConstant( availableEnergy, n, anpn );
00291       G4double ran = G4UniformRand();
00292       G4double dum, excs = 0.0;
00293       if( targetParticle.GetDefinition() == aProton )
00294       {
00295         G4int counter = -1;
00296         for( npos=0; (npos<numSec/3) && (ran>=excs); ++npos )
00297         {
00298           for( nneg=std::max(0,npos-2); (nneg<=npos) && (ran>=excs); ++nneg )
00299           {
00300             for( nzero=0; (nzero<numSec/3) && (ran>=excs); ++nzero )
00301             {
00302               if( ++counter < numMul )
00303               {
00304                 nt = npos+nneg+nzero;
00305                 if( nt > 0 )
00306                 {
00307                   test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
00308                   dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
00309                   if( std::fabs(dum) < 1.0 )
00310                   {
00311                     if( test >= 1.0e-10 )excs += dum*test;
00312                   }
00313                   else
00314                     excs += dum*test;
00315                 }
00316               }
00317             }
00318           }
00319         }
00320         if( ran >= excs )return;  // 3 previous loops continued to the end
00321         npos--; nneg--; nzero--;
00322       }
00323       else  // target must be a neutron
00324       {
00325         G4int counter = -1;
00326         for( npos=0; (npos<numSec/3) && (ran>=excs); ++npos )
00327         {
00328           for( nneg=std::max(0,npos-1); (nneg<=(npos+1)) && (ran>=excs); ++nneg )
00329           {
00330             for( nzero=0; (nzero<numSec/3) && (ran>=excs); ++nzero )
00331             {
00332               if( ++counter < numMul )
00333               {
00334                 nt = npos+nneg+nzero;
00335                 if( (nt>=1) && (nt<=numSec) )
00336                 {
00337                   test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
00338                   dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
00339                   if( std::fabs(dum) < 1.0 )
00340                   {
00341                     if( test >= 1.0e-10 )excs += dum*test;
00342                   }
00343                   else
00344                     excs += dum*test;
00345                 }
00346               }
00347             }
00348           }
00349         }
00350         if( ran >= excs )return;  // 3 previous loops continued to the end
00351         npos--; nneg--; nzero--;
00352       }
00353     }
00354     if( targetParticle.GetDefinition() == aProton )
00355     {
00356       switch( npos-nneg )
00357       {
00358        case 1:
00359          if( G4UniformRand() < 0.5 )
00360          {
00361            if( G4UniformRand() < 0.5 )
00362              currentParticle.SetDefinitionAndUpdateE( aKaonZS );
00363            else
00364              currentParticle.SetDefinitionAndUpdateE( aKaonZL );
00365            incidentHasChanged = true;
00366          }
00367          else
00368          {
00369            targetParticle.SetDefinitionAndUpdateE( aNeutron );
00370            targetHasChanged = true;
00371          }
00372          break;
00373        case 2:
00374          if( G4UniformRand() < 0.5 )
00375            currentParticle.SetDefinitionAndUpdateE( aKaonZS );
00376          else
00377            currentParticle.SetDefinitionAndUpdateE( aKaonZL );
00378          incidentHasChanged = true;
00379          targetParticle.SetDefinitionAndUpdateE( aNeutron );
00380          incidentHasChanged = true;
00381          targetHasChanged = true;
00382          break;
00383        default:
00384          break;
00385       }
00386     }
00387     else   // target is a neutron
00388     {
00389       switch( npos-nneg )
00390       {
00391        case 0:
00392          if( G4UniformRand() < 0.25 )
00393          {
00394            if( G4UniformRand() < 0.5 )
00395              currentParticle.SetDefinitionAndUpdateE( aKaonZS );
00396            else
00397              currentParticle.SetDefinitionAndUpdateE( aKaonZL );
00398            targetParticle.SetDefinitionAndUpdateE( aProton );
00399            incidentHasChanged = true;
00400            targetHasChanged = true;
00401          }
00402          break;
00403        case 1:
00404          if( G4UniformRand() < 0.5 )
00405            currentParticle.SetDefinitionAndUpdateE( aKaonZS );
00406          else
00407            currentParticle.SetDefinitionAndUpdateE( aKaonZL );
00408          incidentHasChanged = true;
00409          break;
00410        default: // assumes nneg = npos+1 so charge is conserved
00411          targetParticle.SetDefinitionAndUpdateE( aProton );
00412          targetHasChanged = true;
00413          break;
00414       }
00415     }
00416     SetUpPions( npos, nneg, nzero, vec, vecLen );
00417     return;
00418   }
00419 
00420  /* end of file */
00421  

Generated on Mon May 27 17:48:45 2013 for Geant4 by  doxygen 1.4.7