G4LEAntiSigmaPlusInelastic.cc

Go to the documentation of this file.
00001 //
00002 // ********************************************************************
00003 // * License and Disclaimer                                           *
00004 // *                                                                  *
00005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
00006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
00007 // * conditions of the Geant4 Software License,  included in the file *
00008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
00009 // * include a list of copyright holders.                             *
00010 // *                                                                  *
00011 // * Neither the authors of this software system, nor their employing *
00012 // * institutes,nor the agencies providing financial support for this *
00013 // * work  make  any representation or  warranty, express or implied, *
00014 // * regarding  this  software system or assume any liability for its *
00015 // * use.  Please see the license in the file  LICENSE  and URL above *
00016 // * for the full disclaimer and the limitation of liability.         *
00017 // *                                                                  *
00018 // * This  code  implementation is the result of  the  scientific and *
00019 // * technical work of the GEANT4 collaboration.                      *
00020 // * By using,  copying,  modifying or  distributing the software (or *
00021 // * any work based  on the software)  you  agree  to acknowledge its *
00022 // * use  in  resulting  scientific  publications,  and indicate your *
00023 // * acceptance of all terms of the Geant4 Software license.          *
00024 // ********************************************************************
00025 //
00026 // $Id$
00027 //
00028 // Hadronic Process: AntiSigmaPlus Inelastic Process
00029 // J.L. Chuma, TRIUMF, 19-Feb-1997
00030 // Modified by J.L.Chuma 30-Apr-97: added originalTarget for CalculateMomenta
00031  
00032 #include "G4LEAntiSigmaPlusInelastic.hh"
00033 #include "G4PhysicalConstants.hh"
00034 #include "G4SystemOfUnits.hh"
00035 #include "Randomize.hh"
00036 
00037 void G4LEAntiSigmaPlusInelastic::ModelDescription(std::ostream& outFile) const
00038 {
00039   outFile << "G4LEAntiSigmaPlusInelastic is one of the Low Energy\n"
00040           << "Parameterized (LEP) models used to implement inelastic\n"
00041           << "antiSigma+ scattering from nuclei.  It is a re-engineered\n"
00042           << "version of the GHEISHA code of H. Fesefeldt.  It divides the\n"
00043           << "initial collision products into backward- and forward-going\n"
00044           << "clusters which are then decayed into final state hadrons.  The\n"
00045           << "model does not conserve energy on an event-by-event basis.  It\n"
00046           << "may be applied to antiSigma+ with initial energies between 0\n"
00047           << "and 25 GeV.\n";
00048 }
00049 
00050 
00051 G4HadFinalState*
00052 G4LEAntiSigmaPlusInelastic::ApplyYourself(const G4HadProjectile& aTrack,
00053                                           G4Nucleus& targetNucleus)
00054 { 
00055   const G4HadProjectile *originalIncident = &aTrack;
00056   if (originalIncident->GetKineticEnergy()<= 0.1*MeV) {
00057     theParticleChange.SetStatusChange(isAlive);
00058     theParticleChange.SetEnergyChange(aTrack.GetKineticEnergy());
00059     theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); 
00060     return &theParticleChange;      
00061   }
00062 
00063   // create the target particle
00064   G4DynamicParticle* originalTarget = targetNucleus.ReturnTargetParticle();
00065     
00066   if (verboseLevel > 1) {
00067     const G4Material *targetMaterial = aTrack.GetMaterial();
00068     G4cout << "G4LEAntiSigmaPlusInelastic::ApplyYourself called" << G4endl;
00069     G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
00070     G4cout << "target material = " << targetMaterial->GetName() << ", ";
00071     G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
00072            << G4endl;
00073   }
00074 
00075   // Fermi motion and evaporation
00076   // As of Geant3, the Fermi energy calculation had not been Done
00077   G4double ek = originalIncident->GetKineticEnergy()/MeV;
00078   G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
00079   G4ReactionProduct modifiedOriginal;
00080   modifiedOriginal = *originalIncident;
00081     
00082   G4double tkin = targetNucleus.Cinema( ek );
00083   ek += tkin;
00084   modifiedOriginal.SetKineticEnergy( ek*MeV );
00085   G4double et = ek + amas;
00086   G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
00087   G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
00088   if (pp > 0.0) {
00089     G4ThreeVector momentum = modifiedOriginal.GetMomentum();
00090     modifiedOriginal.SetMomentum( momentum * (p/pp) );
00091   }
00092 
00093   // calculate black track energies
00094   tkin = targetNucleus.EvaporationEffects(ek);
00095   ek -= tkin;
00096   modifiedOriginal.SetKineticEnergy( ek*MeV );
00097   et = ek + amas;
00098   p = std::sqrt( std::abs((et-amas)*(et+amas)) );
00099   pp = modifiedOriginal.GetMomentum().mag()/MeV;
00100   if (pp > 0.0) {
00101     G4ThreeVector momentum = modifiedOriginal.GetMomentum();
00102     modifiedOriginal.SetMomentum( momentum * (p/pp) );
00103   }
00104   G4ReactionProduct currentParticle = modifiedOriginal;
00105   G4ReactionProduct targetParticle;
00106   targetParticle = *originalTarget;
00107   currentParticle.SetSide(1); // incident always goes in forward hemisphere
00108   targetParticle.SetSide(-1);  // target always goes in backward hemisphere
00109   G4bool incidentHasChanged = false;
00110   G4bool targetHasChanged = false;
00111   G4bool quasiElastic = false;
00112   G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec;  // vec will contain the secondary particles
00113   G4int vecLen = 0;
00114   vec.Initialize( 0 );
00115     
00116   const G4double cutOff = 0.1;
00117   const G4double anni = std::min( 1.3*currentParticle.GetTotalMomentum()/GeV, 0.4 );
00118   if ((currentParticle.GetKineticEnergy()/MeV > cutOff) ||
00119       (G4UniformRand() > anni) )
00120     Cascade(vec, vecLen, originalIncident, currentParticle, targetParticle,
00121             incidentHasChanged, targetHasChanged, quasiElastic);
00122     
00123   CalculateMomenta(vec, vecLen, originalIncident, originalTarget,
00124                    modifiedOriginal, targetNucleus, currentParticle,
00125                    targetParticle, incidentHasChanged, targetHasChanged,
00126                    quasiElastic);
00127     
00128   SetUpChange(vec, vecLen, currentParticle, targetParticle, incidentHasChanged);
00129 
00130   if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
00131 
00132   delete originalTarget;
00133   return &theParticleChange;
00134 }
00135  
00136 void G4LEAntiSigmaPlusInelastic::Cascade(
00137    G4FastVector<G4ReactionProduct,GHADLISTSIZE> &vec,
00138    G4int& vecLen,
00139    const G4HadProjectile *originalIncident,
00140    G4ReactionProduct &currentParticle,
00141    G4ReactionProduct &targetParticle,
00142    G4bool &incidentHasChanged,
00143    G4bool &targetHasChanged,
00144    G4bool &quasiElastic )
00145 {
00146     // derived from original FORTRAN code CASASP by H. Fesefeldt (13-Sep-1987)
00147     //
00148     // AntiSigmaPlus undergoes interaction with nucleon within a nucleus.  Check if it is
00149     // energetically possible to produce pions/kaons.  In not, assume nuclear excitation
00150     // occurs and input particle is degraded in energy. No other particles are produced.
00151     // If reaction is possible, find the correct number of pions/protons/neutrons
00152     // produced using an interpolation to multiplicity data.  Replace some pions or
00153     // protons/neutrons by kaons or strange baryons according to the average
00154     // multiplicity per Inelastic reaction.
00155     //
00156     const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
00157     const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
00158     const G4double pOriginal = originalIncident->GetTotalMomentum()/MeV;
00159     const G4double targetMass = targetParticle.GetMass()/MeV;
00160     G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
00161                                         targetMass*targetMass +
00162                                         2.0*targetMass*etOriginal );
00163     G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
00164     
00165     static G4bool first = true;
00166     const G4int numMul = 1200;
00167     const G4int numMulA = 400;
00168     const G4int numSec = 60;
00169     static G4double protmul[numMul], protnorm[numSec]; // proton constants
00170     static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
00171     static G4double protmulA[numMulA], protnormA[numSec]; // proton constants
00172     static G4double neutmulA[numMulA], neutnormA[numSec]; // neutron constants
00173     // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
00174     G4int counter, nt=0, npos=0, nneg=0, nzero=0;
00175     G4double test;
00176     const G4double c = 1.25;    
00177     const G4double b[] = { 0.7, 0.7 };
00178     if( first )       // compute normalization constants, this will only be Done once
00179     {
00180       first = false;
00181       G4int i;
00182       for( i=0; i<numMul; ++i )protmul[i] = 0.0;
00183       for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
00184       counter = -1;
00185       for( npos=0; npos<(numSec/3); ++npos )
00186       {
00187         for( nneg=std::max(0,npos-1); nneg<=(npos+1); ++nneg )
00188         {
00189           for( nzero=0; nzero<numSec/3; ++nzero )
00190           {
00191             if( ++counter < numMul )
00192             {
00193               nt = npos+nneg+nzero;
00194               if( nt>0 && nt<=numSec )
00195               {
00196                 protmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[0],c);
00197                 protnorm[nt-1] += protmul[counter];
00198               }
00199             }
00200           }
00201         }
00202       }
00203       for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
00204       for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
00205       counter = -1;
00206       for( npos=0; npos<numSec/3; ++npos )
00207       {
00208         for( nneg=npos; nneg<=(npos+2); ++nneg )
00209         {
00210           for( nzero=0; nzero<numSec/3; ++nzero )
00211           {
00212             if( ++counter < numMul )
00213             {
00214               nt = npos+nneg+nzero;
00215               if( nt>0 && nt<=numSec )
00216               {
00217                 neutmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[1],c);
00218                 neutnorm[nt-1] += neutmul[counter];
00219               }
00220             }
00221           }
00222         }
00223       }
00224       for( i=0; i<numSec; ++i )
00225       {
00226         if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
00227         if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
00228       }
00229       //
00230       // do the same for annihilation channels
00231       //
00232       for( i=0; i<numMulA; ++i )protmulA[i] = 0.0;
00233       for( i=0; i<numSec; ++i )protnormA[i] = 0.0;
00234       counter = -1;
00235       for( npos=1; npos<(numSec/3); ++npos )
00236       {
00237         nneg = npos;
00238         for( nzero=0; nzero<numSec/3; ++nzero )
00239         {
00240           if( ++counter < numMulA )
00241           {
00242             nt = npos+nneg+nzero;
00243             if( nt>1 && nt<=numSec )
00244             {
00245               protmulA[counter] = Pmltpc(npos,nneg,nzero,nt,b[0],c);
00246               protnormA[nt-1] += protmulA[counter];
00247             }
00248           }
00249         }
00250       }
00251       for( i=0; i<numMulA; ++i )neutmulA[i] = 0.0;
00252       for( i=0; i<numSec; ++i )neutnormA[i] = 0.0;
00253       counter = -1;
00254        for( npos=0; npos<numSec/3; ++npos )
00255        {
00256         nneg = npos+1;
00257         for( nzero=0; nzero<numSec/3; ++nzero )
00258         {
00259           if( ++counter < numMulA )
00260           {
00261             nt = npos+nneg+nzero;
00262             if( nt>1 && nt<=numSec )
00263             {
00264               neutmulA[counter] = Pmltpc(npos,nneg,nzero,nt,b[1],c);
00265               neutnormA[nt-1] += neutmulA[counter];
00266             }
00267           }
00268         }
00269       }
00270       for( i=0; i<numSec; ++i )
00271       {
00272         if( protnormA[i] > 0.0 )protnormA[i] = 1.0/protnormA[i];
00273         if( neutnormA[i] > 0.0 )neutnormA[i] = 1.0/neutnormA[i];
00274       }
00275     }   // end of initialization
00276     
00277     const G4double expxu = 82.;           // upper bound for arg. of exp
00278     const G4double expxl = -expxu;        // lower bound for arg. of exp
00279     G4ParticleDefinition *aNeutron = G4Neutron::Neutron();
00280     G4ParticleDefinition *aProton = G4Proton::Proton();
00281     G4ParticleDefinition *aPiPlus = G4PionPlus::PionPlus();
00282     G4ParticleDefinition *anAntiLambda = G4AntiLambda::AntiLambda();
00283     G4ParticleDefinition *aKaonMinus = G4KaonMinus::KaonMinus();
00284     G4ParticleDefinition *aKaonPlus = G4KaonPlus::KaonPlus();
00285     G4ParticleDefinition *aKaonZL = G4KaonZeroLong::KaonZeroLong();
00286     G4ParticleDefinition *anAntiSigmaZero = G4AntiSigmaZero::AntiSigmaZero();
00287     const G4double anhl[] = {1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,0.97,0.88,
00288                              0.85,0.81,0.75,0.64,0.64,0.55,0.55,0.45,0.47,0.40,
00289                              0.39,0.36,0.33,0.10,0.01};
00290     G4int iplab = G4int( pOriginal/GeV*10.0 );
00291     if( iplab >  9 )iplab = G4int( (pOriginal/GeV- 1.0)*5.0  ) + 10;
00292     if( iplab > 14 )iplab = G4int(  pOriginal/GeV- 2.0       ) + 15;
00293     if( iplab > 22 )iplab = G4int( (pOriginal/GeV-10.0)/10.0 ) + 23;
00294     if( iplab > 24 )iplab = 24;
00295     if( G4UniformRand() > anhl[iplab] )
00296     {
00297       if( availableEnergy <= aPiPlus->GetPDGMass()/MeV )
00298       {
00299         quasiElastic = true;
00300         return;
00301       }
00302       G4double n, anpn;
00303       GetNormalizationConstant( availableEnergy, n, anpn );
00304       G4double ran = G4UniformRand();
00305       G4double dum, excs = 0.0;
00306       if( targetParticle.GetDefinition() == aProton )
00307       {
00308         counter = -1;
00309         for( npos=0; npos<numSec/3 && ran>=excs; ++npos )
00310         {
00311           for( nneg=std::max(0,npos-1); nneg<=(npos+1) && ran>=excs; ++nneg )
00312           {
00313             for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
00314             {
00315               if( ++counter < numMul )
00316               {
00317                 nt = npos+nneg+nzero;
00318                 if( (nt>0) && (nt<=numSec) )
00319                 {
00320                   test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
00321                   dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
00322                   if( std::fabs(dum) < 1.0 )
00323                   {
00324                     if( test >= 1.0e-10 )excs += dum*test;
00325                   }
00326                   else
00327                     excs += dum*test;
00328                 }
00329               }
00330             }
00331           }
00332         }
00333         if( ran >= excs )  // 3 previous loops continued to the end
00334         {
00335           quasiElastic = true;
00336           return;
00337         }
00338         npos--; nneg--; nzero--;
00339         G4int ncht = std::min( 3, std::max( 1, npos-nneg+2 ) );
00340         switch( ncht )
00341         {
00342          case 1:
00343            if( G4UniformRand() < 0.5 )
00344              currentParticle.SetDefinitionAndUpdateE( anAntiLambda );
00345            else
00346              currentParticle.SetDefinitionAndUpdateE( anAntiSigmaZero );
00347            incidentHasChanged = true;
00348            break;
00349          case 2:
00350            if( G4UniformRand() >= 0.5 )
00351            {
00352              if( G4UniformRand() < 0.5 )
00353                currentParticle.SetDefinitionAndUpdateE( anAntiLambda );
00354              else
00355                currentParticle.SetDefinitionAndUpdateE( anAntiSigmaZero );
00356              incidentHasChanged = true;
00357            }             
00358            targetParticle.SetDefinitionAndUpdateE( aNeutron );
00359            targetHasChanged = true;
00360            break;
00361          case 3:
00362            targetParticle.SetDefinitionAndUpdateE( aNeutron );
00363            targetHasChanged = true;
00364            break;
00365         }
00366       }
00367       else  // target must be a neutron
00368       {
00369         counter = -1;
00370         for( npos=0; npos<numSec/3 && ran>=excs; ++npos )
00371         {
00372           for( nneg=npos; nneg<=(npos+2) && ran>=excs; ++nneg )
00373           {
00374             for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
00375             {
00376               if( ++counter < numMul )
00377               {
00378                 nt = npos+nneg+nzero;
00379                 if( (nt>0) && (nt<=numSec) )
00380                 {
00381                   test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
00382                   dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
00383                   if( std::fabs(dum) < 1.0 )
00384                   {
00385                     if( test >= 1.0e-10 )excs += dum*test;
00386                   }
00387                   else
00388                     excs += dum*test;
00389                 }
00390               }
00391             }
00392           }
00393         }
00394         if( ran >= excs )  // 3 previous loops continued to the end
00395         {
00396           quasiElastic = true;
00397           return;
00398         }
00399         npos--; nneg--; nzero--;
00400         G4int ncht = std::min( 3, std::max( 1, npos-nneg+3 ) );
00401         switch( ncht )
00402         {
00403          case 1:
00404            if( G4UniformRand() < 0.5 )
00405              currentParticle.SetDefinitionAndUpdateE( anAntiLambda );
00406            else
00407              currentParticle.SetDefinitionAndUpdateE( anAntiSigmaZero );
00408            incidentHasChanged = true;
00409            targetParticle.SetDefinitionAndUpdateE( aProton );
00410            targetHasChanged = true;
00411            break;
00412          case 2:
00413            if( G4UniformRand() < 0.5 )
00414            {
00415              if( G4UniformRand() < 0.5 )
00416              {
00417                currentParticle.SetDefinitionAndUpdateE( anAntiLambda );
00418                incidentHasChanged = true;
00419              }
00420              else
00421              {
00422                targetParticle.SetDefinitionAndUpdateE( aProton );
00423                targetHasChanged = true;
00424              }
00425            }
00426            else
00427            {
00428              if( G4UniformRand() < 0.5 )
00429              {
00430                currentParticle.SetDefinitionAndUpdateE( anAntiSigmaZero );
00431                incidentHasChanged = true;
00432              }
00433              else
00434              {
00435                targetParticle.SetDefinitionAndUpdateE( aProton );
00436                targetHasChanged = true;
00437              }
00438            }
00439            break;
00440          case 3:
00441            break;
00442         }
00443       }
00444     }
00445     else  // random number <= anhl[iplab]
00446     {
00447       if( centerofmassEnergy <= aPiPlus->GetPDGMass()/MeV+aKaonPlus->GetPDGMass()/MeV )
00448       {
00449         quasiElastic = true;
00450         return;
00451       }
00452       G4double n, anpn;
00453       GetNormalizationConstant( -centerofmassEnergy, n, anpn );
00454       G4double ran = G4UniformRand();
00455       G4double dum, excs = 0.0;
00456       if( targetParticle.GetDefinition() == aProton )
00457       {
00458         counter = -1;
00459         for( npos=1; npos<numSec/3 && ran>=excs; ++npos )
00460         {
00461           nneg = npos;
00462           for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
00463           {
00464             if( ++counter < numMulA )
00465             {
00466               nt = npos+nneg+nzero;
00467               if( nt>1 && nt<=numSec )
00468               {
00469                 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
00470                 dum = (pi/anpn)*nt*protmulA[counter]*protnormA[nt-1]/(2.0*n*n);
00471                 if( std::fabs(dum) < 1.0 )
00472                 {
00473                   if( test >= 1.0e-10 )excs += dum*test;
00474                 }
00475                 else
00476                   excs += dum*test;
00477               }
00478             }
00479           }
00480         }
00481         if( ran >= excs )  // 3 previous loops continued to the end
00482         {
00483           quasiElastic = true;
00484           return;
00485         }
00486         npos--; nzero--;
00487       }
00488       else  // target must be a neutron
00489       {
00490         counter = -1;
00491         for( npos=0; npos<numSec/3 && ran>=excs; ++npos )
00492         {
00493           nneg = npos+1;
00494           for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
00495           {
00496             if( ++counter < numMulA )
00497             {
00498               nt = npos+nneg+nzero;
00499               if( nt>1 && nt<=numSec )
00500               {
00501                 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
00502                 dum = (pi/anpn)*nt*neutmulA[counter]*neutnormA[nt-1]/(2.0*n*n);
00503                 if( std::fabs(dum) < 1.0 )
00504                 {
00505                   if( test >= 1.0e-10 )excs += dum*test;
00506                 }
00507                 else
00508                   excs += dum*test;
00509               }
00510             }
00511           }
00512         }
00513         if( ran >= excs )  // 3 previous loops continued to the end
00514         {
00515           quasiElastic = true;
00516           return;
00517         }
00518         npos--; nzero--;
00519       }
00520       if( nzero > 0 )
00521       {
00522         if( nneg > 0 )
00523         {
00524           if( G4UniformRand() < 0.5 )
00525           {
00526             vec.Initialize( 1 );
00527             G4ReactionProduct *p= new G4ReactionProduct;
00528             p->SetDefinition( aKaonMinus );
00529             (G4UniformRand() < 0.5) ? p->SetSide( -1 ) : p->SetSide( 1 );
00530             vec.SetElement( vecLen++, p );
00531             --nneg;
00532           }
00533           else
00534           {
00535             vec.Initialize( 1 );
00536             G4ReactionProduct *p= new G4ReactionProduct ;
00537             p->SetDefinition( aKaonZL );
00538             (G4UniformRand() < 0.5) ? p->SetSide( -1 ) : p->SetSide( 1 );
00539             vec.SetElement( vecLen++, p );
00540             --nzero;
00541           }
00542         }
00543         else   // nneg == 0
00544         {
00545           vec.Initialize( 1 );
00546           G4ReactionProduct *p = new G4ReactionProduct;
00547           p->SetDefinition( aKaonZL );
00548           (G4UniformRand() < 0.5) ? p->SetSide( -1 ) : p->SetSide( 1 );
00549           vec.SetElement( vecLen++, p );
00550           --nzero;
00551         }
00552       }
00553       else    //  nzero == 0
00554       {
00555         if( nneg > 0 )
00556         {
00557           vec.Initialize( 1 );
00558           G4ReactionProduct *p = new G4ReactionProduct;
00559           p->SetDefinition( aKaonMinus );
00560           (G4UniformRand() < 0.5) ? p->SetSide( -1 ) : p->SetSide( 1 );
00561           vec.SetElement( vecLen++, p );
00562           --nneg;
00563         }
00564       }
00565       currentParticle.SetMass( 0.0 );
00566       targetParticle.SetMass( 0.0 );
00567     }
00568     SetUpPions( npos, nneg, nzero, vec, vecLen );
00569     return;
00570 }
00571 
00572  /* end of file */
00573  

Generated on Mon May 27 17:48:44 2013 for Geant4 by  doxygen 1.4.7