G4He3EvaporationProbability.cc

Go to the documentation of this file.
00001 //
00002 // ********************************************************************
00003 // * License and Disclaimer                                           *
00004 // *                                                                  *
00005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
00006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
00007 // * conditions of the Geant4 Software License,  included in the file *
00008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
00009 // * include a list of copyright holders.                             *
00010 // *                                                                  *
00011 // * Neither the authors of this software system, nor their employing *
00012 // * institutes,nor the agencies providing financial support for this *
00013 // * work  make  any representation or  warranty, express or implied, *
00014 // * regarding  this  software system or assume any liability for its *
00015 // * use.  Please see the license in the file  LICENSE  and URL above *
00016 // * for the full disclaimer and the limitation of liability.         *
00017 // *                                                                  *
00018 // * This  code  implementation is the result of  the  scientific and *
00019 // * technical work of the GEANT4 collaboration.                      *
00020 // * By using,  copying,  modifying or  distributing the software (or *
00021 // * any work based  on the software)  you  agree  to acknowledge its *
00022 // * use  in  resulting  scientific  publications,  and indicate your *
00023 // * acceptance of all terms of the Geant4 Software license.          *
00024 // ********************************************************************
00025 //
00026 // $Id$
00027 //
00028 // J.M. Quesada (August2008). Based on:
00029 //
00030 // Hadronic Process: Nuclear De-excitations
00031 // by V. Lara (Oct 1998)
00032 //
00033 // Modified:
00034 // 03-09-2008 J.M. Quesada for external choice of inverse cross section option
00035 // 17-11-2010 V.Ivanchenko integer Z and A
00036 
00037 #include "G4He3EvaporationProbability.hh"
00038 #include "G4SystemOfUnits.hh"
00039 
00040 G4He3EvaporationProbability::G4He3EvaporationProbability() :
00041    G4EvaporationProbability(3,2,2,&theCoulombBarrier) // A,Z,Gamma,&theCoulombBarrier
00042 {
00043   ResidualA = ResidualZ = theA = theZ = FragmentA = 0;
00044   ResidualAthrd = FragmentAthrd = 0.0;
00045 }
00046 
00047 G4He3EvaporationProbability::~G4He3EvaporationProbability() 
00048 {}
00049 
00050 G4double G4He3EvaporationProbability::CalcAlphaParam(const G4Fragment & fragment)  
00051   { return 1.0 + CCoeficient(fragment.GetZ_asInt()-GetZ());}
00052         
00053 G4double G4He3EvaporationProbability::CalcBetaParam(const G4Fragment & )  
00054   { return 0.0; }
00055 
00056 
00057 G4double G4He3EvaporationProbability::CCoeficient(G4int aZ) 
00058 {
00059   // Data comes from 
00060   // Dostrovsky, Fraenkel and Friedlander
00061   // Physical Review, vol 116, num. 3 1959
00062   // 
00063   // const G4int size = 5;
00064   // G4double Zlist[5] = { 10.0, 20.0, 30.0, 50.0, 70.0};
00065   //    G4double Calpha[5] = { 0.10, 0.10, 0.10, 0.08, 0.06};
00066   // C for He3 is equal to C for alpha times 4/3
00067   G4double C = 0.0;
00068         
00069   if (aZ <= 30)
00070     {
00071       C = 0.10;
00072     }
00073   else if (aZ <= 50)
00074     {
00075       C = 0.1 - (aZ - 30)*0.001;
00076     }
00077   else if (aZ < 70)
00078     {
00079       C = 0.08 - (aZ - 50)*0.001;
00080     }
00081   else
00082     {
00083       C = 0.06;
00084     }
00085   return C*(4.0/3.0);
00086 }
00087 
00089 //J. M. Quesada (Dec 2007-June 2008): New inverse reaction cross sections 
00090 //OPT=0 Dostrovski's parameterization
00091 //OPT=1,2 Chatterjee's paramaterization 
00092 //OPT=3,4 Kalbach's parameterization 
00093 // 
00094 G4double 
00095 G4He3EvaporationProbability::CrossSection(const  G4Fragment & fragment, G4double K)
00096 {
00097 
00098   theA=GetA();
00099   theZ=GetZ();
00100   ResidualA=fragment.GetA_asInt()-theA;
00101   ResidualZ=fragment.GetZ_asInt()-theZ; 
00102   
00103   ResidualAthrd=fG4pow->Z13(ResidualA);
00104   FragmentA=fragment.GetA_asInt();
00105   FragmentAthrd=fG4pow->Z13(FragmentA);
00106 
00107   if (OPTxs==0) {std::ostringstream errOs;
00108   errOs << "We should'n be here (OPT =0) at evaporation cross section calculation (He3's)!!"  
00109         <<G4endl;
00110   throw G4HadronicException(__FILE__, __LINE__, errOs.str());
00111   return 0.;}
00112   if( OPTxs==1 || OPTxs==2) return G4He3EvaporationProbability::GetOpt12( K);
00113   else if (OPTxs==3 || OPTxs==4)  return G4He3EvaporationProbability::GetOpt34( K);
00114   else{
00115     std::ostringstream errOs;
00116     errOs << "BAD He3's CROSS SECTION OPTION AT EVAPORATION!!"  <<G4endl;
00117     throw G4HadronicException(__FILE__, __LINE__, errOs.str());
00118     return 0.;
00119   }
00120 }
00121 
00122 //********************* OPT=1,2 : Chatterjee's cross section *****************
00123 //(fitting to cross section from Bechetti & Greenles OM potential)
00124 
00125 G4double G4He3EvaporationProbability::GetOpt12(const  G4double K)
00126 {
00127   G4double Kc = K;
00128 
00129   // JMQ xsec is set constat above limit of validity
00130   if (K > 50*MeV) { Kc = 50*MeV; }
00131 
00132   G4double landa ,mu ,nu ,p , Ec,q,r,ji,xs;
00133 
00134   G4double     p0 = -3.06;
00135   G4double     p1 = 278.5;
00136   G4double     p2 = -1389.;
00137   G4double     landa0 = -0.00535;
00138   G4double     landa1 = -11.16;
00139   G4double     mum0 = 555.5;
00140   G4double     mu1 = 0.40;
00141   G4double     nu0 = 687.4;
00142   G4double     nu1 = -476.3;
00143   G4double     nu2 = 0.509;    
00144   G4double     delta=1.2;              
00145 
00146   Ec = 1.44*theZ*ResidualZ/(1.5*ResidualAthrd+delta);
00147   p = p0 + p1/Ec + p2/(Ec*Ec);
00148   landa = landa0*ResidualA + landa1;
00149 
00150   G4double resmu1 = fG4pow->powZ(ResidualA,mu1); 
00151   mu = mum0*resmu1;
00152   nu = resmu1*(nu0 + nu1*Ec + nu2*(Ec*Ec));
00153   q = landa - nu/(Ec*Ec) - 2*p*Ec;
00154   r = mu + 2*nu/Ec + p*(Ec*Ec);
00155   
00156   ji=std::max(Kc,Ec);
00157   if(Kc < Ec) { xs = p*Kc*Kc + q*Kc + r;}
00158   else {xs = p*(Kc - ji)*(Kc - ji) + landa*Kc + mu + nu*(2 - Kc/ji)/ji ;}
00159   
00160   if (xs <0.0) {xs=0.0;}
00161               
00162   return xs;
00163 
00164 }
00165 
00166 // *********** OPT=3,4 : Kalbach's cross sections (from PRECO code)*************
00167 G4double G4He3EvaporationProbability::GetOpt34(const  G4double K)
00168 //c     ** 3he from o.m. of gibson et al
00169 {
00170   G4double landa, mu, nu, p , signor(1.),sig;
00171   G4double ec,ecsq,xnulam,etest(0.),a; 
00172   G4double b,ecut,cut,ecut2,geom,elab;
00173 
00174   G4double     flow = 1.e-18;
00175   G4double     spill= 1.e+18;
00176 
00177   G4double     p0 = -2.88;
00178   G4double     p1 = 205.6;
00179   G4double     p2 = -1487.;
00180   G4double     landa0 = 0.00459;
00181   G4double     landa1 = -8.93;
00182   G4double     mum0 = 611.2;
00183   G4double     mu1 = 0.35;
00184   G4double     nu0 = 473.8;
00185   G4double     nu1 = -468.2;
00186   G4double     nu2 = -2.225;      
00187   
00188   G4double      ra=0.80;
00189         
00190   //JMQ 13/02/09 increase of reduced radius to lower the barrier
00191   // ec = 1.44 * theZ * ResidualZ / (1.5*ResidualAthrd+ra);
00192   ec = 1.44 * theZ * ResidualZ / (1.7*ResidualAthrd+ra);
00193   ecsq = ec * ec;
00194   p = p0 + p1/ec + p2/ecsq;
00195   landa = landa0*ResidualA + landa1;
00196   a = fG4pow->powZ(ResidualA,mu1);
00197   mu = mum0 * a;
00198   nu = a* (nu0+nu1*ec+nu2*ecsq);  
00199   xnulam = nu / landa;
00200   if (xnulam > spill) { xnulam=0.; }
00201   if (xnulam >= flow) { etest = 1.2 *std::sqrt(xnulam); }
00202   
00203   a = -2.*p*ec + landa - nu/ecsq;
00204   b = p*ecsq + mu + 2.*nu/ec;
00205   ecut = 0.;
00206   cut = a*a - 4.*p*b;
00207   if (cut > 0.) ecut = std::sqrt(cut);
00208   ecut = (ecut-a) / (p+p);
00209   ecut2 = ecut;
00210   //JMQ 290310 for avoiding unphysical increase below minimum (at ecut)
00211   // ecut<0 means that there is no cut with energy axis, i.e. xs is set
00212   // to 0 bellow minimum
00213   //  if (cut < 0.) ecut2 = ecut - 2.;
00214   if (cut < 0.) { ecut2 = ecut; }
00215   elab = K * FragmentA /G4double(ResidualA);
00216   sig = 0.;
00217   
00218   if (elab <= ec) { //start for E<Ec
00219     if (elab > ecut2) { sig = (p*elab*elab+a*elab+b) * signor; }
00220   }           //end for E<Ec
00221   else {           //start for E>Ec
00222     sig = (landa*elab+mu+nu/elab) * signor;
00223     geom = 0.;
00224     if (xnulam < flow || elab < etest) { return sig; }
00225     geom = std::sqrt(theA*K);
00226     geom = 1.23*ResidualAthrd + ra + 4.573/geom;
00227     geom = 31.416 * geom * geom;
00228     sig = std::max(geom,sig);
00229   }           //end for E>Ec
00230   return sig;
00231   
00232 }

Generated on Mon May 27 17:48:27 2013 for Geant4 by  doxygen 1.4.7