G4ErrorFreeTrajState.cc

Go to the documentation of this file.
00001 //
00002 // ********************************************************************
00003 // * License and Disclaimer                                           *
00004 // *                                                                  *
00005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
00006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
00007 // * conditions of the Geant4 Software License,  included in the file *
00008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
00009 // * include a list of copyright holders.                             *
00010 // *                                                                  *
00011 // * Neither the authors of this software system, nor their employing *
00012 // * institutes,nor the agencies providing financial support for this *
00013 // * work  make  any representation or  warranty, express or implied, *
00014 // * regarding  this  software system or assume any liability for its *
00015 // * use.  Please see the license in the file  LICENSE  and URL above *
00016 // * for the full disclaimer and the limitation of liability.         *
00017 // *                                                                  *
00018 // * This  code  implementation is the result of  the  scientific and *
00019 // * technical work of the GEANT4 collaboration.                      *
00020 // * By using,  copying,  modifying or  distributing the software (or *
00021 // * any work based  on the software)  you  agree  to acknowledge its *
00022 // * use  in  resulting  scientific  publications,  and indicate your *
00023 // * acceptance of all terms of the Geant4 Software license.          *
00024 // ********************************************************************
00025 //
00026 // $Id: G4ErrorFreeTrajState.cc 69766 2013-05-14 14:33:55Z gcosmo $
00027 //
00028 // ------------------------------------------------------------
00029 //      GEANT 4 class implementation file 
00030 // ------------------------------------------------------------
00031 //
00032 
00033 #include <iomanip>
00034 
00035 #include "G4PhysicalConstants.hh"
00036 #include "G4SystemOfUnits.hh"
00037 #include "G4Field.hh"
00038 #include "G4FieldManager.hh"
00039 #include "G4TransportationManager.hh"
00040 #include "G4GeometryTolerance.hh"
00041 #include "G4Material.hh"
00042 #include "G4ErrorPropagatorData.hh"
00043 #include "G4ErrorFreeTrajState.hh"
00044 #include "G4ErrorFreeTrajParam.hh"
00045 #include "G4ErrorSurfaceTrajState.hh"
00046 #include "G4ErrorMatrix.hh"
00047 
00048 //------------------------------------------------------------------------
00049 G4ErrorFreeTrajState::G4ErrorFreeTrajState( const G4String& partName, const G4Point3D& pos, const G4Vector3D& mom, const G4ErrorTrajErr& errmat) : G4ErrorTrajState( partName, pos, mom, errmat )
00050 {
00051   fTrajParam = G4ErrorFreeTrajParam( pos, mom );
00052   Init();
00053 }
00054 
00055 
00056 //------------------------------------------------------------------------
00057 G4ErrorFreeTrajState::G4ErrorFreeTrajState( const G4ErrorSurfaceTrajState& tpSD ) : G4ErrorTrajState( tpSD.GetParticleType(), tpSD.GetPosition(), tpSD.GetMomentum() )
00058 {
00059   // G4ThreeVector planeNormal = tpSD.GetPlaneNormal();
00060   // G4double fPt = tpSD.GetMomentum()*planeNormal;//mom projected on normal to plane  
00061   // G4ErrorSurfaceTrajParam tpSDparam = tpSD.GetParameters();
00062   // G4ThreeVector Psc = fPt * planeNormal + tpSDparam.GetPU()*tpSDparam.GetVectorU() + tpSD.GetPV()*tpSD.GetVectorW();
00063 
00064   fTrajParam = G4ErrorFreeTrajParam( fPosition, fMomentum );
00065   Init();
00066 
00067   //----- Get the error matrix in SC coordinates
00068   G4ErrorSurfaceTrajParam tpSDparam = tpSD.GetParameters();
00069   G4double mom = fMomentum.mag();
00070   G4double mom2 = fMomentum.mag2();
00071   G4double TVW1 = std::sqrt( mom2 / ( mom2 + tpSDparam.GetPV()*tpSDparam.GetPV() + tpSDparam.GetPW()*tpSDparam.GetPW()) );
00072   G4ThreeVector vTVW( TVW1, tpSDparam.GetPV()/mom * TVW1, tpSDparam.GetPW()/mom * TVW1 );
00073   G4Vector3D vectorU = tpSDparam.GetVectorV().cross(  tpSDparam.GetVectorW() );
00074   G4Vector3D vTN = vTVW.x()*vectorU + vTVW.y()*tpSDparam.GetVectorV() + vTVW.z()*tpSDparam.GetVectorW();
00075 
00076 #ifdef G4EVERBOSE
00077    if( iverbose >= 5){
00078      G4double pc2 = std::asin( vTN.z() );
00079      G4double pc3 = std::atan (vTN.y()/vTN.x());
00080   
00081      G4cout << " CHECK: pc2 " << pc2 << " = " << GetParameters().GetLambda() <<  " diff " << pc2-GetParameters().GetLambda() << G4endl;
00082      G4cout << " CHECK: pc3 " << pc3 << " = " << GetParameters().GetPhi() <<  " diff " << pc3-GetParameters().GetPhi() << G4endl;
00083    }
00084 #endif
00085 
00086   //--- Get the unit vectors perp to P 
00087   G4double cosl = std::cos( GetParameters().GetLambda() ); 
00088   if (cosl < 1.E-30) cosl = 1.E-30;
00089   G4double cosl1 = 1./cosl;
00090   G4Vector3D vUN(-vTN.y()*cosl1, vTN.x()*cosl1, 0. );
00091   G4Vector3D vVN(-vTN.z()*vUN.y(), vTN.z()*vUN.x(), cosl );
00092 
00093   G4Vector3D vUperp = G4Vector3D( -fMomentum.y(), fMomentum.x(), 0.);
00094   G4Vector3D vVperp = vUperp.cross( fMomentum );
00095   vUperp *= 1./vUperp.mag();
00096   vVperp *= 1./vVperp.mag();
00097 
00098 #ifdef G4EVERBOSE
00099    if( iverbose >= 5 ){
00100      G4cout << " CHECK: vUN " << vUN << " = " << vUperp <<  " diff " << (vUN-vUperp).mag() << G4endl;
00101      G4cout << " CHECK: vVN " << vVN << " = " << vVperp <<  " diff " << (vVN-vVperp).mag() << G4endl;
00102    }
00103 #endif
00104 
00105   //get the dot products of vectors perpendicular to direction and vector defining SD plane
00106   G4double dUU = vUperp * tpSD.GetVectorV();
00107   G4double dUV = vUperp * tpSD.GetVectorW();
00108   G4double dVU = vVperp * tpSD.GetVectorV();
00109   G4double dVV = vVperp * tpSD.GetVectorW();
00110 
00111   //--- Get transformation first
00112   G4ErrorMatrix transfM(5, 5, 1 );
00113   //--- Get magnetic field
00114   const G4Field* field = G4TransportationManager::GetTransportationManager()->GetFieldManager()->GetDetectorField();
00115   G4ThreeVector dir = fTrajParam.GetDirection();
00116   G4double invCosTheta = 1./std::cos( dir.theta() );
00117   G4cout << " dir="<<dir<<" invCosTheta "<<invCosTheta << G4endl;  
00118 
00119   if( fCharge != 0 && field ) {
00120     G4double pos1[3]; pos1[0] = fPosition.x()*cm; pos1[1] = fPosition.y()*cm; pos1[2] = fPosition.z()*cm;
00121     G4double h1[3];
00122     field->GetFieldValue( pos1, h1 );
00123     G4ThreeVector HPre = G4ThreeVector( h1[0], h1[1], h1[2] ) / tesla *10.;
00124     G4double magHPre = HPre.mag();
00125     G4double invP = 1./fMomentum.mag();
00126     G4double magHPreM = magHPre * invP;
00127     if( magHPre != 0. ) {
00128       G4double magHPreM2 = fCharge / magHPre;
00129 
00130       G4double Q = -magHPreM * c_light;
00131       G4double sinz = -HPre*vUperp * magHPreM2;
00132       G4double cosz =  HPre*vVperp * magHPreM2;
00133 
00134       transfM[1][3] = -Q*dir.y()*sinz;
00135       transfM[1][4] = -Q*dir.z()*sinz;
00136       transfM[2][3] = -Q*dir.y()*cosz*invCosTheta;
00137       transfM[2][4] = -Q*dir.z()*cosz*invCosTheta;
00138     }
00139   }
00140 
00141   transfM[0][0] = 1.;
00142   transfM[1][1] = dir.x()*dVU;
00143   transfM[1][2] = dir.x()*dVV;
00144   transfM[2][1] = dir.x()*dUU*invCosTheta;
00145   transfM[2][2] = dir.x()*dUV*invCosTheta;
00146   transfM[3][3] = dUU;
00147   transfM[3][4] = dUV;
00148   transfM[4][3] = dVU;
00149   transfM[4][4] = dVV;
00150 
00151   fError = G4ErrorTrajErr( tpSD.GetError().similarity( transfM ) );
00152 
00153 #ifdef G4EVERBOSE
00154   if( iverbose >= 1) G4cout << "error matrix SD2SC " << fError << G4endl;
00155   if( iverbose >= 4) G4cout << "G4ErrorFreeTrajState from SD " << *this << G4endl;
00156 #endif
00157 }
00158 
00159 
00160 //------------------------------------------------------------------------
00161 void G4ErrorFreeTrajState::Init()
00162 {
00163   theTSType = G4eTS_FREE;
00164   BuildCharge();
00165   theTransfMat = G4ErrorMatrix(5,5,0);
00166   theFirstStep = true;
00167 }
00168 
00169 //------------------------------------------------------------------------
00170 void G4ErrorFreeTrajState::Dump( std::ostream& out ) const
00171 {
00172   out << *this;
00173 }
00174 
00175 //------------------------------------------------------------------------
00176 G4int G4ErrorFreeTrajState::Update( const G4Track* aTrack )
00177 {
00178   G4int ierr = 0;
00179   fTrajParam.Update( aTrack );
00180   UpdatePosMom( aTrack->GetPosition(), aTrack->GetMomentum() );
00181   return ierr;
00182 }
00183 
00184 
00185 //------------------------------------------------------------------------
00186 std::ostream& operator<<(std::ostream& out, const G4ErrorFreeTrajState& ts)
00187 {
00188   std::ios::fmtflags orig_flags = out.flags();
00189 
00190   out.setf(std::ios::fixed,std::ios::floatfield);
00191   
00192   ts.DumpPosMomError( out );
00193  
00194   out << " G4ErrorFreeTrajState: Params: " << ts.fTrajParam << G4endl;
00195 
00196   out.flags(orig_flags);
00197 
00198   return out;
00199 }
00200 
00201 
00202 //------------------------------------------------------------------------
00203 G4int G4ErrorFreeTrajState::PropagateError( const G4Track* aTrack )
00204 {
00205   G4double stepLengthCm = aTrack->GetStep()->GetStepLength()/cm;
00206   if( G4ErrorPropagatorData::GetErrorPropagatorData()->GetStage() == G4ErrorStage_Deflation ) stepLengthCm *= -1.;
00207 
00208   G4double kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance();
00209 
00210   if( std::fabs(stepLengthCm) <= kCarTolerance/cm ) return 0;
00211   
00212 #ifdef G4EVERBOSE
00213   if( iverbose >= 2 )G4cout << "  G4ErrorFreeTrajState::PropagateError " << G4endl;
00214   G4cout << "G4EP: iverbose="<< iverbose << G4endl;
00215 #endif
00216 
00217   // * *** ERROR PROPAGATION ON A HELIX ASSUMING SC VARIABLES
00218   G4Point3D vposPost = aTrack->GetPosition()/cm;
00219   G4Vector3D vpPost = aTrack->GetMomentum()/GeV;
00220   //  G4Point3D vposPre = fPosition/cm;
00221   //  G4Vector3D vpPre = fMomentum/GeV;
00222   G4Point3D vposPre = aTrack->GetStep()->GetPreStepPoint()->GetPosition()/cm;
00223   G4Vector3D vpPre = aTrack->GetStep()->GetPreStepPoint()->GetMomentum()/GeV;
00224   //correct to avoid propagation along Z 
00225   if( vpPre.mag() == vpPre.z() ) vpPre.setX( 1.E-6*MeV );
00226   if( vpPost.mag() == vpPost.z() ) vpPost.setX( 1.E-6*MeV );
00227 
00228   G4double pPre = vpPre.mag();
00229   G4double pPost = vpPost.mag();
00230 #ifdef G4EVERBOSE
00231   if( iverbose >= 2 ) {
00232     G4cout << "G4EP: vposPre " << vposPre << G4endl
00233               << "G4EP: vposPost " << vposPost << G4endl;
00234     G4cout << "G4EP: vpPre " << vpPre << G4endl
00235               << "G4EP: vpPost " << vpPost << G4endl;
00236     G4cout << " err start step " << fError << G4endl;
00237     G4cout << "G4EP: stepLengthCm " << stepLengthCm << G4endl;
00238   }
00239 #endif
00240 
00241   if( pPre == 0. || pPost == 0 ) return 2;
00242   G4double pInvPre = 1./pPre;
00243   G4double pInvPost = 1./pPost;
00244   G4double deltaPInv = pInvPost - pInvPre;
00245   if( iverbose >= 2 ) G4cout << "G4EP:  pInvPre" << pInvPre<< "  pInvPost:" << pInvPost<<"  deltaPInv:" << deltaPInv<<   G4endl;
00246 
00247 
00248   G4Vector3D vpPreNorm = vpPre * pInvPre;
00249   G4Vector3D vpPostNorm = vpPost * pInvPost;
00250   if( iverbose >= 2 ) G4cout << "G4EP: vpPreNorm " << vpPreNorm << " vpPostNorm " << vpPostNorm << G4endl;
00251   //return if propagation along Z??  
00252   if( 1. - std::fabs(vpPostNorm.z()) < kCarTolerance ) return 4;
00253   G4double sinpPre = std::sin( vpPreNorm.theta() ); //cosine perpendicular to pPre = sine pPre
00254   G4double sinpPost = std::sin( vpPostNorm.theta() ); //cosine perpendicular to pPost = sine pPost
00255   G4double sinpPostInv = 1./std::sin( vpPreNorm.theta() );
00256 
00257 #ifdef G4EVERBOSE
00258   if( iverbose >= 2 ) G4cout << "G4EP: cosl " << sinpPre << " cosl0 " << sinpPost << G4endl;
00259 #endif
00260   //* *** DEFINE TRANSFORMATION MATRIX BETWEEN X1 AND X2 FOR
00261   //* *** NEUTRAL PARTICLE OR FIELDFREE REGION
00262   G4ErrorMatrix transf(5, 5, 0 );
00263 
00264   transf[3][2] = stepLengthCm * sinpPost;
00265   transf[4][1] = stepLengthCm;
00266   for( size_t ii=0;ii < 5; ii++ ){
00267     transf[ii][ii] = 1.;
00268   }
00269 #ifdef G4EVERBOSE
00270   if( iverbose >= 2 ) {
00271     G4cout << "G4EP: transf matrix neutral " << transf;
00272   }
00273 #endif
00274 
00275   //  charge X propagation direction
00276   G4double charge = aTrack->GetDynamicParticle()->GetCharge();
00277   if( G4ErrorPropagatorData::GetErrorPropagatorData()->GetMode() == G4ErrorMode_PropBackwards ) {
00278     charge *= -1.; 
00279   }
00280   //  G4cout << " charge " << charge << G4endl;
00281   //t check if particle has charge
00282   //t  if( charge == 0 ) goto 45;
00283   // check if the magnetic field is = 0.
00284 
00285   //position is from geant4, it is assumed to be in mm (for debugging, eventually it will not be transformed)
00286   //it is assumed vposPre[] is in cm and pos1[] is in mm.
00287   G4double pos1[3]; pos1[0] = vposPre.x()*cm; pos1[1] = vposPre.y()*cm; pos1[2] = vposPre.z()*cm;
00288   G4double pos2[3]; pos2[0] = vposPost.x()*cm; pos2[1] = vposPost.y()*cm; pos2[2] = vposPost.z()*cm;
00289   G4double h1[3], h2[3];
00290 
00291   const G4Field* field = G4TransportationManager::GetTransportationManager()->GetFieldManager()->GetDetectorField();
00292   if( !field ) return 0; //goto 45
00293 
00294 
00295 
00296   // calculate transformation except it NEUTRAL PARTICLE OR FIELDFREE REGION
00297   if( charge != 0. && field ) {
00298 
00299     field->GetFieldValue( pos1, h1 ); //here pos1[], pos2[] are in mm, not changed
00300     field->GetFieldValue( pos2, h2 );
00301     G4ThreeVector HPre = G4ThreeVector( h1[0], h1[1], h1[2] ) / tesla *10.; //10. is to get same dimensions as GEANT3 (kilogauss)
00302     G4ThreeVector HPost= G4ThreeVector( h2[0], h2[1], h2[2] ) / tesla *10.;
00303     G4double magHPre = HPre.mag();
00304     G4double magHPost = HPost.mag();
00305 #ifdef G4EVERBOSE
00306     if( iverbose >= 2 ) {
00307       G4cout << "G4EP: h1 = "
00308              << h1[0] << ", " << h1[1] << ", " << h1[2] << G4endl;
00309       G4cout << "G4EP: pos1/mm = "
00310              << pos1[0] << ", " << pos1[1] << ", " << pos1[2] << G4endl;
00311       G4cout << "G4EP: pos2/mm = "
00312              << pos2[0] << ", " << pos2[1] << ", " << pos2[2] << G4endl;
00313       G4cout << "G4EP: B-filed in KGauss HPre " << HPre << G4endl
00314              << "G4EP: in KGauss HPost " << HPost << G4endl;
00315     }
00316 #endif
00317     
00318   if( magHPre + magHPost != 0. ) {
00319       
00320    //* *** CHECK WHETHER H*ALFA/P IS TOO DIFFERENT AT X1 AND X2
00321     G4double gam;
00322     if( magHPost != 0. ){ 
00323       gam = HPost * vpPostNorm / magHPost;
00324     }else {
00325       gam = HPre * vpPreNorm / magHPre;
00326     }
00327     
00328     // G4eMagneticLimitsProcess will limit the step, but based on an straight line trajectory
00329     G4double alphaSqr = 1. - gam * gam;
00330     G4double diffHSqr = ( HPre * pInvPre - HPost * pInvPost ).mag2();
00331     G4double delhp6Sqr = 300.*300.; 
00332 #ifdef G4EVERBOSE
00333     if( iverbose >= 2 ) {
00334       G4cout << " G4EP: gam " << gam << " alphaSqr " << alphaSqr
00335              << " diffHSqr " << diffHSqr << G4endl;
00336       G4cout << " alpha= " << sqrt(alphaSqr) << G4endl;
00337     }
00338 #endif
00339     if( diffHSqr * alphaSqr > delhp6Sqr ) return 3;
00340 
00341 
00342     //* *** DEFINE AVERAGE MAGNETIC FIELD AND GRADIENT
00343     G4double pInvAver = 1./(pInvPre + pInvPost );
00344     G4double CFACT8 = 2.997925E-4; 
00345     //G4double HAver
00346     G4ThreeVector vHAverNorm( (HPre*pInvPre + HPost*pInvPost ) * pInvAver * charge * CFACT8 );
00347     G4double HAver = vHAverNorm.mag();
00348     G4double invHAver = 1./HAver;
00349     vHAverNorm *= invHAver;
00350 #ifdef G4EVERBOSE
00351     if( iverbose >= 2 ) G4cout << " G4EP: HaverNorm " << vHAverNorm << " magHAver " << HAver << " charge " << charge<< G4endl;
00352 #endif
00353 
00354     G4double pAver = (pPre+pPost)*0.5;
00355     G4double QAver = -HAver/pAver;
00356     G4double thetaAver = QAver * stepLengthCm;
00357     G4double sinThetaAver = std::sin(thetaAver);
00358     G4double cosThetaAver = std::cos(thetaAver);
00359     G4double gamma = vHAverNorm * vpPostNorm;
00360     G4ThreeVector AN2 = vHAverNorm.cross( vpPostNorm );
00361     
00362 #ifdef G4EVERBOSE
00363     if( iverbose >= 2 ) G4cout << " G4EP: AN2 " << AN2 << "  gamma:"<<gamma<< "  theta="<< thetaAver<<G4endl;
00364 #endif
00365     G4double AU = 1./vpPreNorm.perp();
00366     //t  G4ThreeVector vU( vpPreNorm.cross( G4ThreeVector(0.,0.,1.) ) * AU );
00367     G4ThreeVector vUPre( -AU*vpPreNorm.y(), 
00368                       AU*vpPreNorm.x(), 
00369                       0. );
00370     G4ThreeVector vVPre( -vpPreNorm.z()*vUPre.y(), 
00371                       vpPreNorm.z()*vUPre.x(), 
00372                       vpPreNorm.x()*vUPre.y() - vpPreNorm.y()*vUPre.x() );
00373     
00374     //
00375     AU = 1./vpPostNorm.perp();
00376     //t  G4ThreeVector vU( vpPostNorm.cross( G4ThreeVector(0.,0.,1.) ) * AU );
00377     G4ThreeVector vUPost( -AU*vpPostNorm.y(), 
00378                        AU*vpPostNorm.x(), 
00379                        0. );
00380     G4ThreeVector vVPost( -vpPostNorm.z()*vUPost.y(), 
00381                        vpPostNorm.z()*vUPost.x(), 
00382                        vpPostNorm.x()*vUPost.y() - vpPostNorm.y()*vUPost.x() );
00383 #ifdef G4EVERBOSE
00384     G4cout << " vpPostNorm " << vpPostNorm << G4endl;
00385     if( iverbose >= 2 ) G4cout << " G4EP: AU " << AU << " vUPre " << vUPre << " vVPre " << vVPre << " vUPost " << vUPost << " vVPost " << vVPost << G4endl;
00386 #endif
00387     G4Point3D deltaPos( vposPre - vposPost );
00388 
00389     // * *** COMPLETE TRANSFORMATION MATRIX BETWEEN ERRORS AT X1 AND X2
00390     // * *** FIELD GRADIENT PERPENDICULAR TO TRACK IS PRESENTLY NOT
00391     // * *** TAKEN INTO ACCOUNT
00392     
00393     G4double QP = QAver * pAver; // = -HAver
00394 #ifdef G4EVERBOSE
00395     if( iverbose >= 2) G4cout << " G4EP: QP " << QP << " QAver " << QAver << " pAver " << pAver << G4endl;
00396 #endif
00397     G4double ANV = -( vHAverNorm.x()*vUPost.x() + vHAverNorm.y()*vUPost.y() );
00398     G4double ANU = ( vHAverNorm.x()*vVPost.x() + vHAverNorm.y()*vVPost.y() + vHAverNorm.z()*vVPost.z() );
00399     G4double OMcosThetaAver = 1. - cosThetaAver;
00400 #ifdef G4EVERBOSE
00401     if( iverbose >= 2) G4cout << "G4EP: OMcosThetaAver " << OMcosThetaAver << " cosThetaAver " << cosThetaAver << " thetaAver " << thetaAver << " QAver " << QAver << " stepLengthCm " << stepLengthCm << G4endl;
00402 #endif
00403     G4double TMSINT = thetaAver - sinThetaAver;
00404 #ifdef G4EVERBOSE
00405     if( iverbose >= 2 ) G4cout << " G4EP: ANV " << ANV << " ANU " << ANU << G4endl;
00406 #endif
00407     
00408     G4ThreeVector vHUPre( -vHAverNorm.z() * vUPre.y(),
00409                           vHAverNorm.z() * vUPre.x(),
00410                           vHAverNorm.x() * vUPre.y() - vHAverNorm.y() * vUPre.x() );
00411 #ifdef G4EVERBOSE
00412     //    if( iverbose >= 2 ) G4cout << "G4EP: HUPre(1) " << vHUPre.x() << " " << vHAverNorm.z() << " " << vUPre.y() << G4endl;
00413 #endif
00414     G4ThreeVector vHVPre( vHAverNorm.y() * vVPre.z() - vHAverNorm.z() * vVPre.y(),
00415                           vHAverNorm.z() * vVPre.x() - vHAverNorm.x() * vVPre.z(),
00416                           vHAverNorm.x() * vVPre.y() - vHAverNorm.y() * vVPre.x() );
00417 #ifdef G4EVERBOSE
00418     if( iverbose >= 2 ) G4cout << " G4EP: HUPre " << vHUPre << " HVPre " << vHVPre << G4endl;
00419 #endif
00420     
00421     //------------------- COMPUTE MATRIX
00422     //---------- 1/P
00423     
00424     transf[0][0] = 1.-deltaPInv*pAver*(1.+(vpPostNorm.x()*deltaPos.x()+vpPostNorm.y()*deltaPos.y()+vpPostNorm.z()*deltaPos.z())/stepLengthCm)
00425       +2.*deltaPInv*pAver;
00426     
00427     transf[0][1] =  -deltaPInv/thetaAver*
00428       ( TMSINT*gamma*(vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z()) +
00429         sinThetaAver*(vVPre.x()*vpPostNorm.x()+vVPre.y()*vpPostNorm.y()+vVPre.z()*vpPostNorm.z()) +
00430         OMcosThetaAver*(vHVPre.x()*vpPostNorm.x()+vHVPre.y()*vpPostNorm.y()+vHVPre.z()*vpPostNorm.z()) );
00431     
00432     transf[0][2] =  -sinpPre*deltaPInv/thetaAver*
00433       ( TMSINT*gamma*(vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y()            ) +
00434         sinThetaAver*(vUPre.x()*vpPostNorm.x()+vUPre.y()*vpPostNorm.y()            ) +
00435         OMcosThetaAver*(vHUPre.x()*vpPostNorm.x()+vHUPre.y()*vpPostNorm.y()+vHUPre.z()*vpPostNorm.z()) );
00436     
00437     transf[0][3] =  -deltaPInv/stepLengthCm*(vUPre.x()*vpPostNorm.x()+vUPre.y()*vpPostNorm.y()            );
00438     
00439     transf[0][4] =  -deltaPInv/stepLengthCm*(vVPre.x()*vpPostNorm.x()+vVPre.y()*vpPostNorm.y()+vVPre.z()*vpPostNorm.z());
00440     
00441     // ***   Lambda
00442     transf[1][0] = -QP*ANV*(vpPostNorm.x()*deltaPos.x()+vpPostNorm.y()*deltaPos.y()+vpPostNorm.z()*deltaPos.z())
00443       *(1.+deltaPInv*pAver);
00444 #ifdef G4EVERBOSE
00445      if(iverbose >= 3) G4cout << "ctransf10= " << transf[1][0]  << " " <<  -QP<< " " << ANV<< " " << vpPostNorm.x()<< " " << deltaPos.x()<< " " << vpPostNorm.y()<< " " << deltaPos.y()<< " " << vpPostNorm.z()<< " " << deltaPos.z()
00446       << " " << deltaPInv<< " " << pAver << G4endl;
00447 #endif
00448     
00449     transf[1][1] = cosThetaAver*(vVPre.x()*vVPost.x()+vVPre.y()*vVPost.y()+vVPre.z()*vVPost.z()) +
00450       sinThetaAver*(vHVPre.x()*vVPost.x()+vHVPre.y()*vVPost.y()+vHVPre.z()*vVPost.z()) +
00451       OMcosThetaAver*(vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z())*
00452       (vHAverNorm.x()*vVPost.x()+vHAverNorm.y()*vVPost.y()+vHAverNorm.z()*vVPost.z()) +
00453       ANV*( -sinThetaAver*(vVPre.x()*vpPostNorm.x()+vVPre.y()*vpPostNorm.y()+vVPre.z()*vpPostNorm.z()) +
00454             OMcosThetaAver*(vVPre.x()*AN2.x()+vVPre.y()*AN2.y()+vVPre.z()*AN2.z()) -
00455             TMSINT*gamma*(vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z()) );
00456     
00457     transf[1][2] = cosThetaAver*(vUPre.x()*vVPost.x()+vUPre.y()*vVPost.y()            ) +
00458       sinThetaAver*(vHUPre.x()*vVPost.x()+vHUPre.y()*vVPost.y()+vHUPre.z()*vVPost.z()) +
00459       OMcosThetaAver*(vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y()            )*
00460       (vHAverNorm.x()*vVPost.x()+vHAverNorm.y()*vVPost.y()+vHAverNorm.z()*vVPost.z()) +
00461       ANV*( -sinThetaAver*(vUPre.x()*vpPostNorm.x()+vUPre.y()*vpPostNorm.y()            ) +
00462             OMcosThetaAver*(vUPre.x()*AN2.x()+vUPre.y()*AN2.y()             ) -
00463             TMSINT*gamma*(vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y()            ) );
00464     transf[1][2] = sinpPre*transf[1][2];
00465     
00466     transf[1][3] = -QAver*ANV*(vUPre.x()*vpPostNorm.x()+vUPre.y()*vpPostNorm.y()            );
00467     
00468     transf[1][4] = -QAver*ANV*(vVPre.x()*vpPostNorm.x()+vVPre.y()*vpPostNorm.y()+vVPre.z()*vpPostNorm.z());
00469     
00470     // ***   Phi
00471     
00472     transf[2][0] = -QP*ANU*(vpPostNorm.x()*deltaPos.x()+vpPostNorm.y()*deltaPos.y()+vpPostNorm.z()*deltaPos.z())*sinpPostInv
00473       *(1.+deltaPInv*pAver);
00474 #ifdef G4EVERBOSE
00475    if(iverbose >= 3)G4cout <<"ctransf20= " << transf[2][0] <<" "<< -QP<<" "<<ANU<<" "<<vpPostNorm.x()<<" "<<deltaPos.x()<<" "<<vpPostNorm.y()<<" "<<deltaPos.y()<<" "<<vpPostNorm.z()<<" "<<deltaPos.z()<<" "<<sinpPostInv
00476          <<" "<<deltaPInv<<" "<<pAver<< G4endl;
00477 #endif
00478     transf[2][1] = cosThetaAver*(vVPre.x()*vUPost.x()+vVPre.y()*vUPost.y()            ) +
00479       sinThetaAver*(vHVPre.x()*vUPost.x()+vHVPre.y()*vUPost.y()             ) +
00480       OMcosThetaAver*(vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z())*
00481       (vHAverNorm.x()*vUPost.x()+vHAverNorm.y()*vUPost.y()            ) +
00482       ANU*( -sinThetaAver*(vVPre.x()*vpPostNorm.x()+vVPre.y()*vpPostNorm.y()+vVPre.z()*vpPostNorm.z()) +
00483             OMcosThetaAver*(vVPre.x()*AN2.x()+vVPre.y()*AN2.y()+vVPre.z()*AN2.z()) -
00484             TMSINT*gamma*(vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z()) );
00485     transf[2][1] = sinpPostInv*transf[2][1];
00486     
00487     transf[2][2] = cosThetaAver*(vUPre.x()*vUPost.x()+vUPre.y()*vUPost.y()            ) +
00488       sinThetaAver*(vHUPre.x()*vUPost.x()+vHUPre.y()*vUPost.y()             ) +
00489       OMcosThetaAver*(vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y()            )*
00490       (vHAverNorm.x()*vUPost.x()+vHAverNorm.y()*vUPost.y()            ) +
00491       ANU*( -sinThetaAver*(vUPre.x()*vpPostNorm.x()+vUPre.y()*vpPostNorm.y()            ) +
00492             OMcosThetaAver*(vUPre.x()*AN2.x()+vUPre.y()*AN2.y()             ) -
00493             TMSINT*gamma*(vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y()            ) );
00494     transf[2][2] = sinpPostInv*sinpPre*transf[2][2];
00495     
00496     transf[2][3] = -QAver*ANU*(vUPre.x()*vpPostNorm.x()+vUPre.y()*vpPostNorm.y()            )*sinpPostInv;
00497 #ifdef G4EVERBOSE
00498     if(iverbose >= 3)G4cout <<"ctransf23= " << transf[2][3] <<" "<< -QAver<<" "<<ANU<<" "<<vUPre.x()<<" "<<vpPostNorm.x()<<" "<< vUPre.y()<<" "<<vpPostNorm.y()<<" "<<sinpPostInv<<G4endl;
00499 #endif
00500     
00501     transf[2][4] = -QAver*ANU*(vVPre.x()*vpPostNorm.x()+vVPre.y()*vpPostNorm.y()+vVPre.z()*vpPostNorm.z())*sinpPostInv;
00502     
00503     // ***   Yt
00504     
00505     transf[3][0] = pAver*(vUPost.x()*deltaPos.x()+vUPost.y()*deltaPos.y() )
00506       *(1.+deltaPInv*pAver);
00507 #ifdef G4EVERBOSE
00508    if(iverbose >= 3) G4cout <<"ctransf30= " << transf[3][0] <<" "<< pAver<<" "<<vUPost.x()<<" "<<deltaPos.x()<<" "<<vUPost.y()<<" "<<deltaPos.y()  
00509       <<" "<<deltaPInv<<" "<<pAver<<G4endl;
00510 #endif
00511 
00512     transf[3][1] = (   sinThetaAver*(vVPre.x()*vUPost.x()+vVPre.y()*vUPost.y()            ) +
00513                        OMcosThetaAver*(vHVPre.x()*vUPost.x()+vHVPre.y()*vUPost.y()             ) +
00514                        TMSINT*(vHAverNorm.x()*vUPost.x()+vHAverNorm.y()*vUPost.y()            )*
00515                        (vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z()) )/QAver;
00516     
00517     transf[3][2] = (   sinThetaAver*(vUPre.x()*vUPost.x()+vUPre.y()*vUPost.y()            ) +
00518                        OMcosThetaAver*(vHUPre.x()*vUPost.x()+vHUPre.y()*vUPost.y()             ) +
00519                        TMSINT*(vHAverNorm.x()*vUPost.x()+vHAverNorm.y()*vUPost.y()            )*
00520                        (vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y()            ) )*sinpPre/QAver;
00521 #ifdef G4EVERBOSE 
00522    if(iverbose >= 3) G4cout <<"ctransf32= " << transf[3][2] <<" "<< sinThetaAver<<" "<<vUPre.x()<<" "<<vUPost.x()<<" "<<vUPre.y()<<" "<<vUPost.y() <<" "<<
00523                        OMcosThetaAver<<" "<<vHUPre.x()<<" "<<vUPost.x()<<" "<<vHUPre.y()<<" "<<vUPost.y() <<" "<<
00524                        TMSINT<<" "<<vHAverNorm.x()<<" "<<vUPost.x()<<" "<<vHAverNorm.y()<<" "<<vUPost.y() <<" "<<
00525       vHAverNorm.x()<<" "<<vUPre.x()<<" "<<vHAverNorm.y()<<" "<<vUPre.y() <<" "<<sinpPre<<" "<<QAver<<G4endl;
00526 #endif
00527    
00528     transf[3][3] = (vUPre.x()*vUPost.x()+vUPre.y()*vUPost.y()            );
00529     
00530     transf[3][4] = (vVPre.x()*vUPost.x()+vVPre.y()*vUPost.y()            );
00531 
00532     // ***   Zt
00533     transf[4][0] = pAver*(vVPost.x()*deltaPos.x()+vVPost.y()*deltaPos.y()+vVPost.z()*deltaPos.z())
00534       *(1.+deltaPInv*pAver);
00535    
00536     transf[4][1] = (   sinThetaAver*(vVPre.x()*vVPost.x()+vVPre.y()*vVPost.y()+vVPre.z()*vVPost.z()) +
00537                        OMcosThetaAver*(vHVPre.x()*vVPost.x()+vHVPre.y()*vVPost.y()+vHVPre.z()*vVPost.z()) +
00538                        TMSINT*(vHAverNorm.x()*vVPost.x()+vHAverNorm.y()*vVPost.y()+vHAverNorm.z()*vVPost.z())*
00539                        (vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z()) )/QAver;
00540 #ifdef G4EVERBOSE
00541     if(iverbose >= 3)G4cout <<"ctransf41= " << transf[4][1] <<" "<< sinThetaAver<<" "<< OMcosThetaAver <<" "<<TMSINT<<" "<< vVPre <<" "<<vVPost <<" "<<vHVPre<<" "<<vHAverNorm <<" "<< QAver<<G4endl;
00542 #endif
00543     
00544     transf[4][2] = (   sinThetaAver*(vUPre.x()*vVPost.x()+vUPre.y()*vVPost.y()            ) +
00545                        OMcosThetaAver*(vHUPre.x()*vVPost.x()+vHUPre.y()*vVPost.y()+vHUPre.z()*vVPost.z()) +
00546                        TMSINT*(vHAverNorm.x()*vVPost.x()+vHAverNorm.y()*vVPost.y()+vHAverNorm.z()*vVPost.z())*
00547                        (vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y()            ) )*sinpPre/QAver;
00548 
00549     transf[4][3] = (vUPre.x()*vVPost.x()+vUPre.y()*vVPost.y()  );
00550 
00551     transf[4][4] = (vVPre.x()*vVPost.x()+vVPre.y()*vVPost.y()+vVPre.z()*vVPost.z()); 
00552     //   if(iverbose >= 3) G4cout <<"ctransf44= " << transf[4][4] <<" "<< vVPre.x()  <<" "<<vVPost.x() <<" "<< vVPre.y() <<" "<< vVPost.y() <<" "<< vVPre.z() <<" "<< vVPost.z() << G4endl;
00553 
00554   
00555 #ifdef G4EVERBOSE
00556     if( iverbose >= 1 ) G4cout << "G4EP: transf matrix computed " << transf << G4endl;
00557 #endif
00558     /*    for( G4int ii=0;ii<5;ii++){
00559       for( G4int jj=0;jj<5;jj++){
00560         G4cout << transf[ii][jj] << " ";
00561       }
00562       G4cout << G4endl;
00563       } */
00564    }
00565   }
00566   // end of calculate transformation except it NEUTRAL PARTICLE OR FIELDFREE REGION
00567   /*  if( iverbose >= 1 ) G4cout << "G4EP: transf not updated but initialized " << theFirstStep << G4endl;
00568   if( theFirstStep ) {
00569     theTransfMat = transf;
00570     theFirstStep = false;
00571   }else{
00572     theTransfMat = theTransfMat * transf;
00573     if( iverbose >= 1 ) G4cout << "G4EP: transf matrix accumulated" << theTransfMat << G4endl;
00574   } 
00575   */
00576     theTransfMat = transf;
00577 #ifdef G4EVERBOSE
00578     if( iverbose >= 1 ) G4cout << "G4EP: error matrix before transformation " << fError << G4endl;
00579     if( iverbose >= 2 ) G4cout << " tf * err " << theTransfMat * fError << G4endl
00580                                   << " transf matrix " << theTransfMat.T() << G4endl;
00581 #endif
00582     
00583     fError = fError.similarity(theTransfMat).T();
00584     //-    fError = transf * fError * transf.T();
00585 #ifdef G4EVERBOSE
00586     if( iverbose >= 1 ) G4cout << "G4EP: error matrix propagated " << fError << G4endl;
00587 #endif
00588 
00589     //? S = B*S*BT S.similarity(B)
00590     //? R = S
00591     // not needed * *** TRANSFORM ERROR MATRIX FROM INTERNAL TO EXTERNAL VARIABLES;
00592     
00593     PropagateErrorMSC( aTrack );
00594     
00595     PropagateErrorIoni( aTrack );
00596     
00597     return 0;
00598 }
00599 
00600 
00601 //------------------------------------------------------------------------
00602 G4int G4ErrorFreeTrajState::PropagateErrorMSC( const G4Track* aTrack )
00603 { 
00604   G4ThreeVector vpPre = aTrack->GetMomentum()/GeV;
00605   G4double pPre = vpPre.mag();
00606   G4double pBeta = pPre*pPre / (aTrack->GetTotalEnergy()/GeV);
00607   G4double  stepLengthCm = aTrack->GetStep()->GetStepLength()/cm;
00608 
00609   G4Material* mate = aTrack->GetVolume()->GetLogicalVolume()->GetMaterial();
00610   G4double effZ, effA;
00611   CalculateEffectiveZandA( mate, effZ, effA );
00612 
00613 #ifdef G4EVERBOSE
00614   if( iverbose >= 4 ) G4cout << "material " << mate->GetName() 
00615                      //<< " " << mate->GetZ() << " "  << mate->GetA() 
00616                         << " effZ:" << effZ << " effA:" << effA
00617                         << " dens(g/mole):"  << mate->GetDensity()/g*mole << " Radlen/cm:" << mate->GetRadlen()/cm << " nuclLen/cm" << mate->GetNuclearInterLength()/cm << G4endl;
00618 #endif
00619 
00620   G4double RI = stepLengthCm / (mate->GetRadlen()/cm);
00621 #ifdef G4EVERBOSE
00622   if( iverbose >= 4 ) G4cout << std::setprecision(6) << std::setw(6) << "G4EP:MSC: RI=X/X0 " << RI << " stepLengthCm " << stepLengthCm << " radlen/cm " << (mate->GetRadlen()/cm) << " RI*1.e10:" << RI*1.e10 << G4endl;
00623 #endif
00624   G4double charge = aTrack->GetDynamicParticle()->GetCharge();
00625   G4double DD = 1.8496E-4*RI*(charge/pBeta * charge/pBeta );
00626 #ifdef G4EVERBOSE
00627   if( iverbose >= 3 ) G4cout << "G4EP:MSC: D*1E6= " << DD*1.E6 <<" pBeta " << pBeta << G4endl;
00628 #endif
00629   G4double S1 = DD*stepLengthCm*stepLengthCm/3.;
00630   G4double S2 = DD;
00631   G4double S3 = DD*stepLengthCm/2.;
00632 
00633   G4double CLA = std::sqrt( vpPre.x() * vpPre.x() + vpPre.y() * vpPre.y() )/pPre;
00634 #ifdef G4EVERBOSE
00635   if( iverbose >= 2 ) G4cout << std::setw(6) << "G4EP:MSC: RI " << RI << " S1 " << S1 << " S2 "  << S2 << " S3 "  << S3 << " CLA " << CLA << G4endl;
00636 #endif
00637   fError[1][1] += S2;
00638   fError[1][4] -= S3;
00639   fError[2][2] += S2/CLA/CLA;
00640   fError[2][3] += S3/CLA;
00641   fError[3][3] += S1;
00642   fError[4][4] += S1;
00643 
00644 #ifdef G4EVERBOSE
00645   if( iverbose >= 2 ) G4cout << "G4EP:MSC: error matrix propagated msc " << fError << G4endl;
00646 #endif
00647 
00648   return 0;
00649 }
00650 
00651 
00652 //------------------------------------------------------------------------
00653 void G4ErrorFreeTrajState::CalculateEffectiveZandA( const G4Material* mate, G4double& effZ, G4double& effA )
00654 { 
00655   effZ = 0.;
00656   effA = 0.;
00657   G4int ii, nelem = mate->GetNumberOfElements();
00658   const G4double* fracVec = mate->GetFractionVector();
00659   for(ii=0; ii < nelem; ii++ ) {
00660     effZ += mate->GetElement( ii )->GetZ() * fracVec[ii];
00661     effA += mate->GetElement( ii )->GetA() * fracVec[ii] /g*mole;
00662   }
00663 
00664 }
00665 
00666 
00667 //------------------------------------------------------------------------
00668 G4int G4ErrorFreeTrajState::PropagateErrorIoni( const G4Track* aTrack )
00669 { 
00670   G4double stepLengthCm = aTrack->GetStep()->GetStepLength()/cm;
00671 #ifdef G4EVERBOSE
00672   G4double DEDX2;
00673   if( stepLengthCm < 1.E-7 ) {
00674     DEDX2=0.;
00675   }
00676 #endif
00677   //  *     Calculate xi factor (KeV).
00678   G4Material* mate = aTrack->GetVolume()->GetLogicalVolume()->GetMaterial();
00679   G4double effZ, effA;
00680   CalculateEffectiveZandA( mate, effZ, effA );
00681 
00682   G4double Etot = aTrack->GetTotalEnergy()/GeV;
00683   G4double beta = aTrack->GetMomentum().mag()/GeV / Etot;
00684   G4double mass = aTrack->GetDynamicParticle()->GetMass() / GeV;
00685   G4double gamma = Etot / mass;
00686   
00687   // *     Calculate xi factor (keV).
00688   G4double XI = 153.5*effZ*stepLengthCm*(mate->GetDensity()/mg*mole) / 
00689     (effA*beta*beta);
00690 
00691 #ifdef G4EVERBOSE
00692   if( iverbose >= 2 ){
00693     G4cout << "G4EP:IONI: XI/keV " << XI << " beta " << beta << " gamma " << gamma << G4endl;
00694     G4cout << " density " << (mate->GetDensity()/mg*mole) << " effA " << effA << " step " << stepLengthCm << G4endl;
00695   }
00696 #endif
00697   // *     Maximum energy transfer to atomic electron (KeV).
00698   G4double eta = beta*gamma;
00699   G4double etasq = eta*eta;
00700   G4double eMass = 0.51099906/GeV;
00701   G4double massRatio = eMass / mass;
00702   G4double F1 = 2*eMass*etasq;
00703   G4double F2 = 1. + 2. * massRatio * gamma + massRatio * massRatio;
00704   G4double Emax = 1.E+6*F1/F2; // now in keV
00705 
00706   //  * *** and now sigma**2  in GeV
00707   G4double dedxSq = XI*Emax*(1.-(beta*beta/2.))*1.E-12; // now in GeV^2
00708   /*The above  formula for var(1/p) good for dens scatterers. However, for MIPS passing
00709     through a gas it leads to overestimation. Further more for incident electrons
00710     the Emax is almost equal to incident energy.
00711     This leads  to  k=Xi/Emax  as small as e-6  and gradually the cov matrix  explodes.
00712 
00713     http://www2.pv.infn.it/~rotondi/kalman_1.pdf
00714     
00715     Since I do not have enough info at the moment to implement Landau & sub-Landau models for k=Xi/Emax <0.01 I'll saturate k at this value for now
00716   */
00717 
00718   if (XI/Emax<0.01)  dedxSq *=XI/Emax*100  ;// Quench for low Elos, see above: newVar=odVar *k/0.01
00719   
00720 #ifdef G4EVERBOSE
00721   if( iverbose >= 2 )  G4cout << "G4EP:IONI: DEDX^2(GeV^2) " << dedxSq << " emass/GeV: " << eMass << " Emax/keV: " << Emax 
00722                               <<"  k=Xi/Emax="<< XI/Emax<<     G4endl;
00723   
00724 #endif
00725 
00726   G4double pPre6 = (aTrack->GetStep()->GetPreStepPoint()->GetMomentum()/GeV).mag();
00727   pPre6 = std::pow(pPre6, 6 );
00728   //Apply it to error 
00729   fError[0][0] += Etot*Etot*dedxSq / pPre6;
00730 #ifdef G4EVERBOSE
00731   if( iverbose >= 2 ) G4cout << "G4:IONI Etot/GeV: " << Etot << " err_dedx^2/GeV^2: " << dedxSq << " p^6: " << pPre6 << G4endl;
00732   if( iverbose >= 2 ) G4cout << "G4EP:IONI: error2_from_ionisation " << (Etot*Etot*dedxSq) / pPre6 << G4endl;
00733 #endif
00734 
00735   return 0;
00736 }

Generated on Mon May 27 17:48:11 2013 for Geant4 by  doxygen 1.4.7