G4ChipsKaonMinusElasticXS.cc

Go to the documentation of this file.
00001 //
00002 // ********************************************************************
00003 // * License and Disclaimer                                           *
00004 // *                                                                  *
00005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
00006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
00007 // * conditions of the Geant4 Software License,  included in the file *
00008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
00009 // * include a list of copyright holders.                             *
00010 // *                                                                  *
00011 // * Neither the authors of this software system, nor their employing *
00012 // * institutes,nor the agencies providing financial support for this *
00013 // * work  make  any representation or  warranty, express or implied, *
00014 // * regarding  this  software system or assume any liability for its *
00015 // * use.  Please see the license in the file  LICENSE  and URL above *
00016 // * for the full disclaimer and the limitation of liability.         *
00017 // *                                                                  *
00018 // * This  code  implementation is the result of  the  scientific and *
00019 // * technical work of the GEANT4 collaboration.                      *
00020 // * By using,  copying,  modifying or  distributing the software (or *
00021 // * any work based  on the software)  you  agree  to acknowledge its *
00022 // * use  in  resulting  scientific  publications,  and indicate your *
00023 // * acceptance of all terms of the Geant4 Software license.          *
00024 // ********************************************************************
00025 //
00026 //
00027 // $Id$
00028 //
00029 //
00030 // G4 Physics class: G4ChipsKaonMinusElasticXS for pA elastic cross sections
00031 // Created: M.V. Kossov, CERN/ITEP(Moscow), 5-Feb-2010
00032 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 5-Feb-2010
00033 //
00034 // -------------------------------------------------------------------------------
00035 // Short description: Interaction cross-sections for the elastic process. 
00036 // Class extracted from CHIPS and integrated in Geant4 by W.Pokorski
00037 // -------------------------------------------------------------------------------
00038 //
00039 
00040 #include "G4ChipsKaonMinusElasticXS.hh"
00041 #include "G4SystemOfUnits.hh"
00042 #include "G4DynamicParticle.hh"
00043 #include "G4ParticleDefinition.hh"
00044 #include "G4KaonMinus.hh"
00045 #include "G4Nucleus.hh"
00046 #include "G4ParticleTable.hh"
00047 #include "G4NucleiProperties.hh"
00048 
00049 // factory
00050 #include "G4CrossSectionFactory.hh"
00051 //
00052 G4_DECLARE_XS_FACTORY(G4ChipsKaonMinusElasticXS);
00053 
00054 G4ChipsKaonMinusElasticXS::G4ChipsKaonMinusElasticXS():G4VCrossSectionDataSet(Default_Name()), nPoints(128), nLast(nPoints-1)
00055 {
00056   lPMin=-8.;  //Min tabulatedLogarithmMomentum/D
00057   lPMax= 8.;  //Max tabulatedLogarithmMomentum/D
00058   dlnP=(lPMax-lPMin)/nLast;// LogStep inTable /D
00059   onlyCS=true;//Flag toCalculOnlyCS(not Si/Bi)/L
00060   lastSIG=0.; //Last calculated cross section /L
00061   lastLP=-10.;//LastLog(mom_of IncidentHadron)/L
00062   lastTM=0.; //Last t_maximum                /L
00063   theSS=0.;  //TheLastSqSlope of 1st difr.Max/L
00064   theS1=0.;  //TheLastMantissa of 1st difrMax/L
00065   theB1=0.;  //TheLastSlope of 1st difructMax/L
00066   theS2=0.;  //TheLastMantissa of 2nd difrMax/L
00067   theB2=0.;  //TheLastSlope of 2nd difructMax/L
00068   theS3=0.;  //TheLastMantissa of 3d difr.Max/L
00069   theB3=0.;  //TheLastSlope of 3d difruct.Max/L
00070   theS4=0.;  //TheLastMantissa of 4th difrMax/L
00071   theB4=0.;  //TheLastSlope of 4th difructMax/L
00072   lastTZ=0;  // Last atomic number of theTarget
00073   lastTN=0;  // Last # of neutrons in theTarget
00074   lastPIN=0.;// Last initialized max momentum
00075   lastCST=0; // Elastic cross-section table
00076   lastPAR=0; // ParametersForFunctionCalculation
00077   lastSST=0; // E-dep ofSqardSlope of 1st difMax
00078   lastS1T=0; // E-dep of mantissa of 1st dif.Max
00079   lastB1T=0; // E-dep of the slope of 1st difMax
00080   lastS2T=0; // E-dep of mantissa of 2nd difrMax
00081   lastB2T=0; // E-dep of the slope of 2nd difMax
00082   lastS3T=0; // E-dep of mantissa of 3d difr.Max
00083   lastB3T=0; // E-dep of the slope of 3d difrMax
00084   lastS4T=0; // E-dep of mantissa of 4th difrMax
00085   lastB4T=0; // E-dep of the slope of 4th difMax
00086   lastN=0;   // The last N of calculated nucleus
00087   lastZ=0;   // The last Z of calculated nucleus
00088   lastP=0.;  // LastUsed inCrossSection Momentum
00089   lastTH=0.; // Last threshold momentum
00090   lastCS=0.; // Last value of the Cross Section
00091   lastI=0;   // The last position in the DAMDB
00092 }
00093 
00094 G4ChipsKaonMinusElasticXS::~G4ChipsKaonMinusElasticXS()
00095 {
00096   std::vector<G4double*>::iterator pos;
00097   for (pos=CST.begin(); pos<CST.end(); pos++)
00098   { delete [] *pos; }
00099   CST.clear();
00100   for (pos=PAR.begin(); pos<PAR.end(); pos++)
00101   { delete [] *pos; }
00102   PAR.clear();
00103   for (pos=SST.begin(); pos<SST.end(); pos++)
00104   { delete [] *pos; }
00105   SST.clear();
00106   for (pos=S1T.begin(); pos<S1T.end(); pos++)
00107   { delete [] *pos; }
00108   S1T.clear();
00109   for (pos=B1T.begin(); pos<B1T.end(); pos++)
00110   { delete [] *pos; }
00111   B1T.clear();
00112   for (pos=S2T.begin(); pos<S2T.end(); pos++)
00113   { delete [] *pos; }
00114   S2T.clear();
00115   for (pos=B2T.begin(); pos<B2T.end(); pos++)
00116   { delete [] *pos; }
00117   B2T.clear();
00118   for (pos=S3T.begin(); pos<S3T.end(); pos++)
00119   { delete [] *pos; }
00120   S3T.clear();
00121   for (pos=B3T.begin(); pos<B3T.end(); pos++)
00122   { delete [] *pos; }
00123   B3T.clear();
00124   for (pos=S4T.begin(); pos<S4T.end(); pos++)
00125   { delete [] *pos; }
00126   S4T.clear();
00127   for (pos=B4T.begin(); pos<B4T.end(); pos++)
00128   { delete [] *pos; }
00129   B4T.clear();
00130 }
00131 
00132 G4bool G4ChipsKaonMinusElasticXS::IsIsoApplicable(const G4DynamicParticle* Pt, G4int, G4int,    
00133                                                  const G4Element*,
00134                                                  const G4Material*)
00135 {
00136   G4ParticleDefinition* particle = Pt->GetDefinition();
00137   if (particle == G4KaonMinus::KaonMinus()      ) return true;
00138   return false;
00139 }
00140 
00141 // The main member function giving the collision cross section (P is in IU, CS is in mb)
00142 // Make pMom in independent units ! (Now it is MeV)
00143 G4double G4ChipsKaonMinusElasticXS::GetIsoCrossSection(const G4DynamicParticle* Pt, G4int tgZ, G4int A,  
00144                                                         const G4Isotope*,
00145                                                         const G4Element*,
00146                                                         const G4Material*)
00147 {
00148   G4double pMom=Pt->GetTotalMomentum();
00149   G4int tgN = A - tgZ;
00150   
00151   return GetChipsCrossSection(pMom, tgZ, tgN, -321);
00152 }
00153 
00154 G4double G4ChipsKaonMinusElasticXS::GetChipsCrossSection(G4double pMom, G4int tgZ, G4int tgN, G4int)
00155 {
00156   static std::vector <G4int>    colN;  // Vector of N for calculated nuclei (isotops)
00157   static std::vector <G4int>    colZ;  // Vector of Z for calculated nuclei (isotops)
00158   static std::vector <G4double> colP;  // Vector of last momenta for the reaction
00159   static std::vector <G4double> colTH; // Vector of energy thresholds for the reaction
00160   static std::vector <G4double> colCS; // Vector of last cross sections for the reaction
00161   // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---***
00162 
00163   G4bool fCS = false;
00164 
00165   G4double pEn=pMom;
00166   onlyCS=fCS;
00167 
00168   G4bool in=false;                   // By default the isotope must be found in the AMDB
00169   lastP   = 0.;                      // New momentum history (nothing to compare with)
00170   lastN   = tgN;                     // The last N of the calculated nucleus
00171   lastZ   = tgZ;                     // The last Z of the calculated nucleus
00172   lastI   = colN.size();             // Size of the Associative Memory DB in the heap
00173   if(lastI) for(G4int i=0; i<lastI; i++) // Loop over proj/tgZ/tgN lines of DB
00174   {                                  // The nucleus with projPDG is found in AMDB
00175     if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
00176     {
00177       lastI=i;
00178       lastTH =colTH[i];              // Last THreshold (A-dependent)
00179       if(pEn<=lastTH)
00180       {
00181         return 0.;                   // Energy is below the Threshold value
00182       }
00183       lastP  =colP [i];              // Last Momentum  (A-dependent)
00184       lastCS =colCS[i];              // Last CrossSect (A-dependent)
00185       //  if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
00186       if(lastP == pMom)              // Do not recalculate
00187       {
00188         CalculateCrossSection(fCS,-1,i,-321,lastZ,lastN,pMom); // Update param's only
00189         return lastCS*millibarn;     // Use theLastCS
00190       }
00191       in = true;                       // This is the case when the isotop is found in DB
00192       // Momentum pMom is in IU ! @@ Units
00193       lastCS=CalculateCrossSection(fCS,-1,i,-321,lastZ,lastN,pMom); // read & update
00194       if(lastCS<=0. && pEn>lastTH)    // Correct the threshold
00195       {
00196         lastTH=pEn;
00197       }
00198       break;                           // Go out of the LOOP with found lastI
00199     }
00200   } // End of attampt to find the nucleus in DB
00201   if(!in)                            // This nucleus has not been calculated previously
00202   {
00204     lastCS=CalculateCrossSection(fCS,0,lastI,-321,lastZ,lastN,pMom);//calculate&create
00205     if(lastCS<=0.)
00206     {
00207       lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
00208       if(pEn>lastTH)
00209       {
00210         lastTH=pEn;
00211       }
00212     }
00213     colN.push_back(tgN);
00214     colZ.push_back(tgZ);
00215     colP.push_back(pMom);
00216     colTH.push_back(lastTH);
00217     colCS.push_back(lastCS);
00218     return lastCS*millibarn;
00219   } // End of creation of the new set of parameters
00220   else
00221   {
00222     colP[lastI]=pMom;
00223     colCS[lastI]=lastCS;
00224   }
00225   return lastCS*millibarn;
00226 }
00227 
00228 // Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
00229 // F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
00230 G4double G4ChipsKaonMinusElasticXS::CalculateCrossSection(G4bool CS, G4int F,
00231                                     G4int I, G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
00232 {
00233   // *** Begin of Associative Memory DB for acceleration of the cross section calculations
00234   static std::vector <G4double>  PIN;   // Vector of max initialized log(P) in the table
00235   // *** End of Static Definitions (Associative Memory Data Base) ***
00236   G4double pMom=pIU/GeV;                // All calculations are in GeV
00237   onlyCS=CS;                            // Flag to calculate only CS (not Si/Bi)
00238   lastLP=std::log(pMom);                // Make a logarithm of the momentum for calculation
00239   if(F)                                 // This isotope was found in AMDB =>RETRIEVE/UPDATE
00240   {
00241     if(F<0)                             // the AMDB must be loded
00242     {
00243       lastPIN = PIN[I];                 // Max log(P) initialised for this table set
00244       lastPAR = PAR[I];                 // Pointer to the parameter set
00245       lastCST = CST[I];                 // Pointer to the total sross-section table
00246       lastSST = SST[I];                 // Pointer to the first squared slope
00247       lastS1T = S1T[I];                 // Pointer to the first mantissa
00248       lastB1T = B1T[I];                 // Pointer to the first slope
00249       lastS2T = S2T[I];                 // Pointer to the second mantissa
00250       lastB2T = B2T[I];                 // Pointer to the second slope
00251       lastS3T = S3T[I];                 // Pointer to the third mantissa
00252       lastB3T = B3T[I];                 // Pointer to the rhird slope
00253       lastS4T = S4T[I];                 // Pointer to the 4-th mantissa
00254       lastB4T = B4T[I];                 // Pointer to the 4-th slope
00255     }
00256     if(lastLP>lastPIN && lastLP<lPMax)
00257     {
00258       lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
00259       PIN[I]=lastPIN;                   // Remember the new P-Limit of the tables
00260     }
00261   }
00262   else                                  // This isotope wasn't initialized => CREATE
00263   {
00264     lastPAR = new G4double[nPoints];    // Allocate memory for parameters of CS function
00265     lastPAR[nLast]=0;                   // Initialization for VALGRIND
00266     lastCST = new G4double[nPoints];    // Allocate memory for Tabulated CS function    
00267     lastSST = new G4double[nPoints];    // Allocate memory for Tabulated first sqaredSlope 
00268     lastS1T = new G4double[nPoints];    // Allocate memory for Tabulated first mantissa 
00269     lastB1T = new G4double[nPoints];    // Allocate memory for Tabulated first slope    
00270     lastS2T = new G4double[nPoints];    // Allocate memory for Tabulated second mantissa
00271     lastB2T = new G4double[nPoints];    // Allocate memory for Tabulated second slope   
00272     lastS3T = new G4double[nPoints];    // Allocate memory for Tabulated third mantissa 
00273     lastB3T = new G4double[nPoints];    // Allocate memory for Tabulated third slope    
00274     lastS4T = new G4double[nPoints];    // Allocate memory for Tabulated 4-th mantissa 
00275     lastB4T = new G4double[nPoints];    // Allocate memory for Tabulated 4-th slope    
00276     lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
00277     PIN.push_back(lastPIN);             // Fill parameters of CS function to AMDB
00278     PAR.push_back(lastPAR);             // Fill parameters of CS function to AMDB
00279     CST.push_back(lastCST);             // Fill Tabulated CS function to AMDB    
00280     SST.push_back(lastSST);             // Fill Tabulated first sq.slope to AMDB 
00281     S1T.push_back(lastS1T);             // Fill Tabulated first mantissa to AMDB 
00282     B1T.push_back(lastB1T);             // Fill Tabulated first slope to AMDB    
00283     S2T.push_back(lastS2T);             // Fill Tabulated second mantissa to AMDB 
00284     B2T.push_back(lastB2T);             // Fill Tabulated second slope to AMDB    
00285     S3T.push_back(lastS3T);             // Fill Tabulated third mantissa to AMDB 
00286     B3T.push_back(lastB3T);             // Fill Tabulated third slope to AMDB    
00287     S4T.push_back(lastS4T);             // Fill Tabulated 4-th mantissa to AMDB 
00288     B4T.push_back(lastB4T);             // Fill Tabulated 4-th slope to AMDB    
00289   } // End of creation/update of the new set of parameters and tables
00290   // =----------= NOW Update (if necessary) and Calculate the Cross Section =-----------=
00291   if(lastLP>lastPIN && lastLP<lPMax)
00292   {
00293     lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
00294   }
00295   if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
00296   if(lastLP>lPMin && lastLP<=lastPIN)   // Linear fit is made using precalculated tables
00297   {
00298     if(lastLP==lastPIN)
00299     {
00300       G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
00301       G4int    blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
00302       if(blast<0 || blast>=nLast) G4cout<<"G4QKMElCS::CCS:b="<<blast<<",n="<<nLast<<G4endl;
00303       lastSIG = lastCST[blast];
00304       if(!onlyCS)                       // Skip the differential cross-section parameters
00305       {
00306         theSS  = lastSST[blast];
00307         theS1  = lastS1T[blast];
00308         theB1  = lastB1T[blast];
00309         theS2  = lastS2T[blast];
00310         theB2  = lastB2T[blast];
00311         theS3  = lastS3T[blast];
00312         theB3  = lastB3T[blast];
00313         theS4  = lastS4T[blast];
00314         theB4  = lastB4T[blast];
00315       }
00316     }
00317     else
00318     {
00319       G4double shift=(lastLP-lPMin)/dlnP;        // a shift from the beginning of the table
00320       G4int    blast=static_cast<int>(shift);    // the lower bin number
00321       if(blast<0)   blast=0;
00322       if(blast>=nLast) blast=nLast-1;            // low edge of the last bin
00323       shift-=blast;                              // step inside the unit bin
00324       G4int lastL=blast+1;                       // the upper bin number
00325       G4double SIGL=lastCST[blast];              // the basic value of the cross-section
00326       lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
00327       if(!onlyCS)                       // Skip the differential cross-section parameters
00328       {
00329         G4double SSTL=lastSST[blast];           // the low bin of the first squared slope
00330         theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
00331         G4double S1TL=lastS1T[blast];           // the low bin of the first mantissa
00332         theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
00333         G4double B1TL=lastB1T[blast];           // the low bin of the first slope
00334         theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
00335         G4double S2TL=lastS2T[blast];           // the low bin of the second mantissa
00336         theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
00337         G4double B2TL=lastB2T[blast];           // the low bin of the second slope
00338         theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
00339         G4double S3TL=lastS3T[blast];           // the low bin of the third mantissa
00340         theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
00341         G4double B3TL=lastB3T[blast];           // the low bin of the third slope
00342         theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
00343         G4double S4TL=lastS4T[blast];           // the low bin of the 4-th mantissa
00344         theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
00345         G4double B4TL=lastB4T[blast];           // the low bin of the 4-th slope
00346         theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
00347       }
00348     }
00349   }
00350   else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
00351   if(lastSIG<0.) lastSIG = 0.;                   // @@ a Warning print can be added
00352   return lastSIG;
00353 }
00354 
00355 // It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
00356 G4double G4ChipsKaonMinusElasticXS::GetPTables(G4double LP,G4double ILP, G4int PDG,
00357                                                        G4int tgZ, G4int tgN)
00358 {
00359   // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
00360   static const G4double pwd=2727;
00361   const G4int n_kmpel=36;                // #of parameters for pp-elastic ( < nPoints=128)
00362   //                        -0-   -1- -2-  -3- -4- -5-  -6- -7-   -8-   -9--10- -11--12-
00363   G4double kmp_el[n_kmpel]={5.2,.0557,3.5,2.23,.7,.075,.004,.39,.000156,.15,1.,.0156,5.,
00364                             74.,3.,3.4,.2,.17,.001,8.,.055,3.64,5.e-5,4000.,1500.,.46,
00365                             1.2e6,3.5e6,5.e-5,1.e10,8.5e8,1.e10,1.1,3.4e6,6.8e6,0.};
00366   //                        -13-14--15-16--17--18--19- -20- -21- -22-  -23- -24- -25-
00367   //                        -26-  -27-   -28-  -29-  -30- -31-  -32- -33- -34- -35-
00368   if(PDG == -321)
00369   {
00370     // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
00371     //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
00372     //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
00373     //   par(0)       par(7)     par(1) par(2)      par(4)      par(5)         par(6)
00374     //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
00375     //     par(8) par(9) par(10)        par(11)   par(12)par(13)    par(14)
00376     // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
00377     // par(15) par(16)  par(17)     par(18) par(19)  par(20)   par(21) par(22)  par(23)
00378     // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
00379     //  par(24) par(25)     par(26)  par(27) par(28) par(29)  par(30)   par(31)
00380     //
00381     if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
00382     {
00383       if ( tgZ == 1 && tgN == 0 )
00384       {
00385         for (G4int ip=0; ip<n_kmpel; ip++) lastPAR[ip]=kmp_el[ip]; // PiMinus+P
00386       }
00387       else
00388       {
00389         G4double a=tgZ+tgN;
00390         G4double sa=std::sqrt(a);
00391         G4double ssa=std::sqrt(sa);
00392         G4double asa=a*sa;
00393         G4double a2=a*a;
00394         G4double a3=a2*a;
00395         G4double a4=a3*a;
00396         G4double a5=a4*a;
00397         G4double a6=a4*a2;
00398         G4double a7=a6*a;
00399         G4double a8=a7*a;
00400         G4double a9=a8*a;
00401         G4double a10=a5*a5;
00402         G4double a12=a6*a6;
00403         G4double a14=a7*a7;
00404         G4double a16=a8*a8;
00405         G4double a17=a16*a;
00406         //G4double a20=a16*a4;
00407         G4double a32=a16*a16;
00408         // Reaction cross-section parameters (kmael_fit.f)
00409         lastPAR[0]=.06*asa/(1.+a*(.01+.1/ssa));                              // p1
00410         lastPAR[1]=.75*asa/(1.+.009*a);                                      // p2
00411         lastPAR[2]=.1*a2*ssa/(1.+.0015*a2/ssa);                              // p3
00412         lastPAR[3]=1./(1.+500./a2);                                          // p4
00413         lastPAR[4]=4.2;                                                      // p5
00414         lastPAR[5]=0.;                                                       // p6 not used
00415         lastPAR[6]=0.;                                                       // p7 not used
00416         lastPAR[7]=0.;                                                       // p8 not used
00417         lastPAR[8]=0.;                                                       // p9 not used
00418         // @@ the differential cross-section is parameterized separately for A>6 & A<7
00419         if(a<6.5)
00420         {
00421           G4double a28=a16*a12;
00422           // The main pre-exponent      (pel_sg)
00423           lastPAR[ 9]=4000*a;                                // p1
00424           lastPAR[10]=1.2e7*a8+380*a17;                      // p2
00425           lastPAR[11]=.7/(1.+4.e-12*a16);                    // p3
00426           lastPAR[12]=2.5/a8/(a4+1.e-16*a32);                // p4
00427           lastPAR[13]=.28*a;                                 // p5
00428           lastPAR[14]=1.2*a2+2.3;                            // p6
00429           lastPAR[15]=3.8/a;                                 // p7
00430           // The main slope             (pel_sl)
00431           lastPAR[16]=.01/(1.+.0024*a5);                     // p1
00432           lastPAR[17]=.2*a;                                  // p2
00433           lastPAR[18]=9.e-7/(1.+.035*a5);                    // p3
00434           lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a);          // p4
00435           // The main quadratic         (pel_sh)
00436           lastPAR[20]=2.25*a3;                               // p1
00437           lastPAR[21]=18.;                                   // p2
00438           lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7);              // p3
00439           lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a);      // p4
00440           // The 1st max pre-exponent   (pel_qq)
00441           lastPAR[24]=1.e5/(a8+2.5e12/a16);                  // p1
00442           lastPAR[25]=8.e7/(a12+1.e-27*a28*a28);             // p2 
00443           lastPAR[26]=.0006*a3;                              // p3
00444           // The 1st max slope          (pel_qs)
00445           lastPAR[27]=10.+4.e-8*a12*a;                       // p1
00446           lastPAR[28]=.114;                                  // p2
00447           lastPAR[29]=.003;                                  // p3
00448           lastPAR[30]=2.e-23;                                // p4
00449           // The effective pre-exponent (pel_ss)
00450           lastPAR[31]=1./(1.+.0001*a8);                      // p1
00451           lastPAR[32]=1.5e-4/(1.+5.e-6*a12);                 // p2
00452           lastPAR[33]=.03;                                   // p3
00453           // The effective slope        (pel_sb)
00454           lastPAR[34]=a/2;                                   // p1
00455           lastPAR[35]=2.e-7*a4;                              // p2
00456           lastPAR[36]=4.;                                    // p3
00457           lastPAR[37]=64./a3;                                // p4
00458           // The gloria pre-exponent    (pel_us)
00459           lastPAR[38]=1.e8*std::exp(.32*asa);                // p1
00460           lastPAR[39]=20.*std::exp(.45*asa);                 // p2
00461           lastPAR[40]=7.e3+2.4e6/a5;                         // p3
00462           lastPAR[41]=2.5e5*std::exp(.085*a3);               // p4
00463           lastPAR[42]=2.5*a;                                 // p5
00464           // The gloria slope           (pel_ub)
00465           lastPAR[43]=920.+.03*a8*a3;                        // p1
00466           lastPAR[44]=93.+.0023*a12;                         // p2
00467         }
00468         else
00469         {
00470           G4double p1a10=2.2e-28*a10;
00471           G4double r4a16=6.e14/a16;
00472           G4double s4a16=r4a16*r4a16;
00473           // a24
00474           // a36
00475           // The main pre-exponent      (peh_sg)
00476           lastPAR[ 9]=4.5*std::pow(a,1.15);                  // p1
00477           lastPAR[10]=.06*std::pow(a,.6);                    // p2
00478           lastPAR[11]=.6*a/(1.+2.e15/a16);                   // p3
00479           lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32);            // p4
00480           lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5);      // p5
00481           lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12);  // p6
00482           // The main slope             (peh_sl)
00483           lastPAR[15]=400./a12+2.e-22*a9;                    // p1
00484           lastPAR[16]=1.e-32*a12/(1.+5.e22/a14);             // p2
00485           lastPAR[17]=1000./a2+9.5*sa*ssa;                   // p3
00486           lastPAR[18]=4.e-6*a*asa+1.e11/a16;                 // p4
00487           lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16);       // p5
00488           lastPAR[20]=9.+100./a;                             // p6
00489           // The main quadratic         (peh_sh)
00490           lastPAR[21]=.002*a3+3.e7/a6;                       // p1
00491           lastPAR[22]=7.e-15*a4*asa;                         // p2
00492           lastPAR[23]=9000./a4;                              // p3
00493           // The 1st max pre-exponent   (peh_qq)
00494           lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4);           // p1
00495           lastPAR[25]=1.e-5*a2+2.e14/a16;                    // p2
00496           lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12);            // p3
00497           lastPAR[27]=.016*asa/(1.+5.e16/a16);               // p4
00498           // The 1st max slope          (peh_qs)
00499           lastPAR[28]=.002*a4/(1.+7.e7/std::pow(a-6.83,14)); // p1
00500           lastPAR[29]=2.e6/a6+7.2/std::pow(a,.11);           // p2
00501           lastPAR[30]=11.*a3/(1.+7.e23/a16/a8);              // p3
00502           lastPAR[31]=100./asa;                              // p4
00503           // The 2nd max pre-exponent   (peh_ss)
00504           lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4);           // p1
00505           lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8);                // p2
00506           lastPAR[34]=1.3+3.e5/a4;                           // p3
00507           lastPAR[35]=500./(a2+50.)+3;                       // p4
00508           lastPAR[36]=1.e-9/a+s4a16*s4a16;                   // p5
00509           // The 2nd max slope          (peh_sb)
00510           lastPAR[37]=.4*asa+3.e-9*a6;                       // p1
00511           lastPAR[38]=.0005*a5;                              // p2
00512           lastPAR[39]=.002*a5;                               // p3
00513           lastPAR[40]=10.;                                   // p4
00514           // The effective pre-exponent (peh_us)
00515           lastPAR[41]=.05+.005*a;                            // p1
00516           lastPAR[42]=7.e-8/sa;                              // p2
00517           lastPAR[43]=.8*sa;                                 // p3
00518           lastPAR[44]=.02*sa;                                // p4
00519           lastPAR[45]=1.e8/a3;                               // p5
00520           lastPAR[46]=3.e32/(a32+1.e32);                     // p6
00521           // The effective slope        (peh_ub)
00522           lastPAR[47]=24.;                                   // p1
00523           lastPAR[48]=20./sa;                                // p2
00524           lastPAR[49]=7.e3*a/(sa+1.);                        // p3
00525           lastPAR[50]=900.*sa/(1.+500./a3);                  // p4
00526         }
00527         // Parameter for lowEnergyNeutrons
00528         lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
00529       }
00530       lastPAR[nLast]=pwd;
00531       // and initialize the zero element of the table
00532       G4double lp=lPMin;                                      // ln(momentum)
00533       G4bool memCS=onlyCS;                                    // ??
00534       onlyCS=false;
00535       lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
00536       onlyCS=memCS;
00537       lastSST[0]=theSS;
00538       lastS1T[0]=theS1;
00539       lastB1T[0]=theB1;
00540       lastS2T[0]=theS2;
00541       lastB2T[0]=theB2;
00542       lastS3T[0]=theS3;
00543       lastB3T[0]=theB3;
00544       lastS4T[0]=theS4;
00545       lastB4T[0]=theB4;
00546     }
00547     if(LP>ILP)
00548     {
00549       G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
00550       if(ini<0) ini=0;
00551       if(ini<nPoints)
00552       {
00553         G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
00554         if(fin>=nPoints) fin=nLast;               // Limit of the tabular initialization
00555         if(fin>=ini)
00556         {
00557           G4double lp=0.;
00558           for(G4int ip=ini; ip<=fin; ip++)        // Calculate tabular CS,S1,B1,S2,B2,S3,B3
00559           {
00560             lp=lPMin+ip*dlnP;                     // ln(momentum)
00561             G4bool memCS=onlyCS;
00562             onlyCS=false;
00563             lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
00564             onlyCS=memCS;
00565             lastSST[ip]=theSS;
00566             lastS1T[ip]=theS1;
00567             lastB1T[ip]=theB1;
00568             lastS2T[ip]=theS2;
00569             lastB2T[ip]=theB2;
00570             lastS3T[ip]=theS3;
00571             lastB3T[ip]=theB3;
00572             lastS4T[ip]=theS4;
00573             lastB4T[ip]=theB4;
00574           }
00575           return lp;
00576         }
00577         else G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetPTables: PDG="<<PDG
00578                    <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP
00579                    <<" > ILP="<<ILP<<" nothing is done!"<<G4endl;
00580       }
00581       else G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetPTables: PDG="<<PDG
00582                  <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
00583                  <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
00584     }
00585   }
00586   else
00587   {
00588     // G4cout<<"*Error*G4ChipsKaonMinusElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ
00589     //       <<", N="<<tgN<<", while it is defined only for PDG=-321"<<G4endl;
00590     // throw G4QException("G4ChipsKaonMinusElasticXS::GetPTables:onlyK-'s implemented");
00591     G4ExceptionDescription ed;
00592     ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
00593        << ", while it is defined only for PDG=-321 (K-) " << G4endl;
00594     G4Exception("G4ChipsKaonMinusElasticXS::GetPTables()", "HAD_CHPS_0000",
00595                 FatalException, ed);
00596   }
00597   return ILP;
00598 }
00599 
00600 // Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
00601 G4double G4ChipsKaonMinusElasticXS::GetExchangeT(G4int tgZ, G4int tgN, G4int PDG)
00602 {
00603   static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
00604   static const G4double third=1./3.;
00605   static const G4double fifth=1./5.;
00606   static const G4double sevth=1./7.;
00607   if(PDG==310 || PDG==130) PDG=-321;
00608   if(PDG!=-321)G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetET:PDG="<<PDG<<G4endl;
00609   if(onlyCS) G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetExT: onlyCS=1"<<G4endl;
00610   if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
00611   G4double q2=0.;
00612   if(tgZ==1 && tgN==0)                // ===> p+p=p+p
00613   {
00614     G4double E1=lastTM*theB1;
00615     G4double R1=(1.-std::exp(-E1));
00616     G4double E2=lastTM*theB2;
00617     G4double R2=(1.-std::exp(-E2*E2*E2));
00618     G4double E3=lastTM*theB3;
00619     G4double R3=(1.-std::exp(-E3));
00620     G4double I1=R1*theS1/theB1;
00621     G4double I2=R2*theS2;
00622     G4double I3=R3*theS3;
00623     G4double I12=I1+I2;
00624     G4double rand=(I12+I3)*G4UniformRand();
00625     if     (rand<I1 )
00626     {
00627       G4double ran=R1*G4UniformRand();
00628       if(ran>1.) ran=1.;
00629       q2=-std::log(1.-ran)/theB1;
00630     }
00631     else if(rand<I12)
00632     {
00633       G4double ran=R2*G4UniformRand();
00634       if(ran>1.) ran=1.;
00635       q2=-std::log(1.-ran);
00636       if(q2<0.) q2=0.;
00637       q2=std::pow(q2,third)/theB2;
00638     }
00639     else
00640     {
00641       G4double ran=R3*G4UniformRand();
00642       if(ran>1.) ran=1.;
00643       q2=-std::log(1.-ran)/theB3;
00644     }
00645   }
00646   else
00647   {
00648     G4double a=tgZ+tgN;
00649     G4double E1=lastTM*(theB1+lastTM*theSS);
00650     G4double R1=(1.-std::exp(-E1));
00651     G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
00652     G4double tm2=lastTM*lastTM;
00653     G4double E2=lastTM*tm2*theB2;                   // power 3 for lowA, 5 for HighA (1st)
00654     if(a>6.5)E2*=tm2;                               // for heavy nuclei
00655     G4double R2=(1.-std::exp(-E2));
00656     G4double E3=lastTM*theB3;
00657     if(a>6.5)E3*=tm2*tm2*tm2;                       // power 1 for lowA, 7 (2nd) for HighA
00658     G4double R3=(1.-std::exp(-E3));
00659     G4double E4=lastTM*theB4;
00660     G4double R4=(1.-std::exp(-E4));
00661     G4double I1=R1*theS1;
00662     G4double I2=R2*theS2;
00663     G4double I3=R3*theS3;
00664     G4double I4=R4*theS4;
00665     G4double I12=I1+I2;
00666     G4double I13=I12+I3;
00667     G4double rand=(I13+I4)*G4UniformRand();
00668     if(rand<I1)
00669     {
00670       G4double ran=R1*G4UniformRand();
00671       if(ran>1.) ran=1.;
00672       q2=-std::log(1.-ran)/theB1;
00673       if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
00674     }
00675     else if(rand<I12)
00676     {
00677       G4double ran=R2*G4UniformRand();
00678       if(ran>1.) ran=1.;
00679       q2=-std::log(1.-ran)/theB2;
00680       if(q2<0.) q2=0.;
00681       if(a<6.5) q2=std::pow(q2,third);
00682       else      q2=std::pow(q2,fifth);
00683     }
00684     else if(rand<I13)
00685     {
00686       G4double ran=R3*G4UniformRand();
00687       if(ran>1.) ran=1.;
00688       q2=-std::log(1.-ran)/theB3;
00689       if(q2<0.) q2=0.;
00690       if(a>6.5) q2=std::pow(q2,sevth);
00691     }
00692     else
00693     {
00694       G4double ran=R4*G4UniformRand();
00695       if(ran>1.) ran=1.;
00696       q2=-std::log(1.-ran)/theB4;
00697       if(a<6.5) q2=lastTM-q2;                    // u reduced for lightA (starts from 0)
00698     }
00699   }
00700   if(q2<0.) q2=0.;
00701   if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QKaonMinusElasticCS::GetExchT: -t="<<q2<<G4endl;
00702   if(q2>lastTM)
00703   {
00704     q2=lastTM;
00705   }
00706   return q2*GeVSQ;
00707 }
00708 
00709 // Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
00710 G4double G4ChipsKaonMinusElasticXS::GetSlope(G4int tgZ, G4int tgN, G4int PDG)
00711 {
00712   static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
00713   if(onlyCS)G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetSl:onlCS=true"<<G4endl;
00714   if(lastLP<-4.3) return 0.;          // S-wave for p<14 MeV/c (kinE<.1MeV)
00715   if(PDG != -321)
00716   {
00717     // G4cout<<"*Error*G4ChipsKaonMinusElasticXS::GetSlope: PDG="<<PDG<<", Z="<<tgZ
00718     //       <<", N="<<tgN<<", while it is defined only for PDG=-321"<<G4endl;
00719     // throw G4QException("G4ChipsKaonMinusElasticXS::GetSlope:Only K- is implemented");
00720     G4ExceptionDescription ed;
00721     ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
00722        << ", while it is defined only for PDG=-321 (K-)" << G4endl;
00723   }
00724   if(theB1<0.) theB1=0.;
00725   if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QKaonMinusElCS::GetSlope:B1="<<theB1<<G4endl;
00726   return theB1/GeVSQ;
00727 }
00728 
00729 // Returns half max(Q2=-t) in independent units (MeV^2)
00730 G4double G4ChipsKaonMinusElasticXS::GetHMaxT()
00731 {
00732   static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
00733   return lastTM*HGeVSQ;
00734 }
00735 
00736 // lastLP is used, so calculating tables, one need to remember and then recover lastLP
00737 G4double G4ChipsKaonMinusElasticXS::GetTabValues(G4double lp, G4int PDG, G4int tgZ,
00738                                                     G4int tgN)
00739 {
00740   if(PDG!=-321)G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetTV:PDG="<<PDG<<G4endl;
00741   if(tgZ<0 || tgZ>92)
00742   {
00743     G4cout<<"*Warning*G4QKaonMinusElasticCS::GetTabV:(1-92)NoIsotopes for Z="<<tgZ<<G4endl;
00744     return 0.;
00745   }
00746   G4int iZ=tgZ-1; // Z index
00747   if(iZ<0)
00748   {
00749     iZ=0;         // conversion of the neutron target to the proton target
00750     tgZ=1;
00751     tgN=0;
00752   }
00753   G4double p=std::exp(lp);              // momentum
00754   G4double sp=std::sqrt(p);             // sqrt(p)
00755   G4double psp=p*sp;                    // p*sqrt(p)
00756   G4double p2=p*p;            
00757   G4double p3=p2*p;
00758   G4double p4=p3*p;
00759   if ( tgZ == 1 && tgN == 0 )           // KaonMinus+P
00760   {
00761     G4double dl2=lp-lastPAR[12];
00762     theSS=lastPAR[35];
00763     theS1=(lastPAR[13]+lastPAR[14]*dl2*dl2)/(1.+lastPAR[15]/p4/p)+
00764           (lastPAR[16]/p2+lastPAR[17]*p)/(p4+lastPAR[18]*sp);
00765     theB1=lastPAR[19]*std::pow(p,lastPAR[20])/(1.+lastPAR[21]/p3);
00766     theS2=lastPAR[22]+lastPAR[23]/(p4+lastPAR[24]*p);
00767     theB2=lastPAR[25]+lastPAR[26]/(p4+lastPAR[27]/sp); 
00768     theS3=lastPAR[28]+lastPAR[29]/(p4*p4+lastPAR[30]*p2+lastPAR[31]);
00769     theB3=lastPAR[32]+lastPAR[33]/(p4+lastPAR[34]); 
00770     theS4=0.;
00771     theB4=0.; 
00772     // Returns the total elastic pim-p cross-section (to avoid spoiling lastSIG)
00773     G4double dp=lp-lastPAR[2];
00774     return lastPAR[0]/psp+(lastPAR[1]*dp*dp+lastPAR[3])/(1.-lastPAR[4]/sp+lastPAR[5]/p4)+
00775      lastPAR[6]/(sqr(p-lastPAR[7])+lastPAR[8])+lastPAR[9]/(sqr(p-lastPAR[10])+lastPAR[11]);
00776   }
00777   else
00778   {
00779     G4double p5=p4*p;
00780     G4double p6=p5*p;
00781     G4double p8=p6*p2;
00782     G4double p10=p8*p2;
00783     G4double p12=p10*p2;
00784     G4double p16=p8*p8;
00785     //G4double p24=p16*p8;
00786     G4double dl=lp-5.;
00787     G4double a=tgZ+tgN;
00788     G4double pah=std::pow(p,a/2);
00789     G4double pa=pah*pah;
00790     G4double pa2=pa*pa;
00791     if(a<6.5)
00792     {
00793       theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
00794             (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
00795       theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
00796       theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
00797       theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
00798       theB2=lastPAR[27]*std::pow(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
00799       theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
00800       theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
00801       theS4=p2*(pah*lastPAR[38]*std::exp(-pah*lastPAR[39])+
00802                 lastPAR[40]/(1.+lastPAR[41]*std::pow(p,lastPAR[42])));
00803       theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
00804     }
00805     else
00806     {
00807       theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
00808             lastPAR[13]/(p5+lastPAR[14]/p16);
00809       theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/std::pow(p,lastPAR[20]))+
00810             lastPAR[17]/(1.+lastPAR[18]/p4);
00811       theSS=lastPAR[21]/(p4/std::pow(p,lastPAR[23])+lastPAR[22]/p4);
00812       theS2=lastPAR[24]/p4/(std::pow(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
00813       theB2=lastPAR[28]/std::pow(p,lastPAR[29])+lastPAR[30]/std::pow(p,lastPAR[31]);
00814       theS3=lastPAR[32]/std::pow(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
00815             lastPAR[33]/(1.+lastPAR[34]/p6);
00816       theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
00817       theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
00818             (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
00819       theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
00820     }
00821     // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
00822     G4double dlp=lp-lastPAR[4]; // ax
00823     //         p1               p2          p3                 p4
00824     return (lastPAR[0]*dlp*dlp+lastPAR[1]+lastPAR[2]/p3)/(1.+lastPAR[3]/p2/sp);
00825   }
00826   return 0.;
00827 } // End of GetTableValues
00828 
00829 // Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
00830 G4double G4ChipsKaonMinusElasticXS::GetQ2max(G4int PDG, G4int tgZ, G4int tgN,
00831                                                     G4double pP)
00832 {
00833   static const G4double mK= G4KaonMinus::KaonMinus()->GetPDGMass()*.001; // MeV to GeV
00834 
00835   static const G4double mK2= mK*mK;
00836 
00837   G4double pP2=pP*pP;                                 // squared momentum of the projectile
00838   if(tgZ || tgN>-1)                                   // ---> pipA
00839   {
00840     G4double mt=G4ParticleTable::GetParticleTable()->FindIon(tgZ,tgZ+tgN,0,tgZ)->GetPDGMass()*.001; // Target mass in GeV
00841 
00842     G4double dmt=mt+mt;
00843     G4double mds=dmt*std::sqrt(pP2+mK2)+mK2+mt*mt;    // Mondelstam mds
00844     return dmt*dmt*pP2/mds;
00845   }
00846   else
00847   {
00848     G4ExceptionDescription ed;
00849     ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
00850        << ", while it is defined only for p projectiles & Z_target>0" << G4endl;
00851     G4Exception("G4ChipsKaonMinusElasticXS::GetQ2max()", "HAD_CHPS_0000",
00852                 FatalException, ed);
00853     return 0;
00854   }
00855 }

Generated on Mon May 27 17:47:52 2013 for Geant4 by  doxygen 1.4.7