Astrophysique à Haute Energie

Ce 27 août 2019, dans le majestueux silence de l'espace, le véhicule spatial Soyouz MS-14 s'est arrimé avec succès... à la Station Spatiale Internationale avec à son bord l'instrument MINI-EUSO, dont la surface focale a été développée, assemblée et testée à l'APC.

 

Ce très beau succès pour notre laboratoire marque une étape clé du développement du programme spatial pour l'observation des rayons cosmiques d'ultra-haute énergie, conduit par la Collaboration Internationale JEM-EUSO au sein de laquelle l'APC occupe une...

Lancement parfait à tous égards en ce 22 août 2019 de MINI-EUSO, à destination de l'ISS

 

Activité X de la région du Centre Galactique et de son trou noir super-massif avec un étude des techniques d'analyse des données de spectro-imagerie X de sources diffuses par les futures instruments à très large résolution spectrale

Resumé

Relativistic turbulence and particle acceleration

The physics of charged particle acceleration is a key element of theoretical multi-messenger astrophysics. Particles that are accelerated to high energies may indeed escape from the source and thus add up to the cosmic ray spectrum, but they may also interact with ambient fields to produce high-energy neutrinos or photons. In this framework, electromagnetic turbulence plays a central role, because it governs the transport of particles inside the site of acceleration and because it offers itself a promising acceleration process, e.g.through particle-wave interactions.

Selection of short gamma-ray bursts for GeV neutrino searches

Since 2013 and the first observation of high-energy astrophysical neutrinos in the IceCube Neutrino Observatory, neutrinos constitute a new messenger to study the extreme Universe, and large neutrino telescopes have been working towards the identification of sources.  While recent multi-messenger observations suggest that blazars may be the first identifiable sources of this observed neutrino flux, other source populations emitting neutrinos remain unidentified. Among promising candidates are short gamma-ray bursts (SGRBs) resulting from the merger of two neutron stars.

Study of the effect of the source environment on GeV neutrino emission in hadronic cosmic accelerators

Since 2013 and the first observation of high-energy astrophysical neutrinos in the IceCube Neutrino Observatory, neutrinos constitute a new messenger to study the extreme Universe, and large neutrino telescopes have been working towards the identification of sources.  While recent multi-messenger observations suggest that blazars may be the first identifiable sources of this observed neutrino flux, other source populations emitting neutrinos remain unidentified.

Etude de l’origine de l’émission à très haute énergie au centre de notre Galaxie et connexion possible avec SgrA* notre plus proche trou noir super-massif.

Le centre de notre galaxie abrite un trou noir super-massif (SMBH) d'environ 4 106 Msol, associé à une source radio compacte appelée Sgr A*. Avec une luminosité bolométrique huit ordres de grandeur en dessous de sa luminosité d'Eddington, son émission actuelle parait très faible.

Etude du flux et de la variabilité du signal issu du Trou noir central de notre Galaxie au TeV, comparaison avec les données de HESS et perspectives avec CTA.

Le centre de notre galaxie abrite un trou noir super-massif (SMBH) d'environ 4 106 Msol, associé à une source radio compacte appelée Sgr A*. Avec une luminosité bolométrique huit ordres de grandeur en dessous de sa luminosité d'Eddington, son émission actuelle parait très faible. L’émission de Sgr A* présente également des sursauts fréquents (quasi quotidiens) observés du domaine radio aux X-durs. Il apparait maintenant acquis que ces sursauts sont dus à l’accélération rapide d’électrons jusqu’à des énergies dépassant la dizaine de GeV au voisinage du trou noir.

Cosmic ray ionization and star formation in molecular clouds

Stars form due to the gravitational collapse of dense molecular clouds. The process of star formation is still not completely understood, but it is believed that a crucial parameter that regulates star formation is the ionization level in the dense cores of molecular clouds. This is because the ionization level is determining the coupling between the gas and the magneticl field, which is in turn affecting the dynamics of the collapse through magnetic pressure support.

Pages

S'abonner à RSS - Astrophysique à Haute Energie