
MIDAPACK - MIcrowave Data Analysis PACKage
1.0beta

Generated by Doxygen 1.7.4

Mon May 7 2012 11:11:44

Contents

1 MIDAPACK library 1

1.1 General description . 1

1.1.1 ACKNOWLEDGMENT: . 1

2 MIDAPACK development team 3

3 Toeplitz algebra documentation 5

3.1 Introduction . 5

3.2 Functionality . 5

3.3 Programming models . 6

3.4 Data distribution and load balancing 6

3.5 Availability and bug tracking . 6

3.6 Installation . 6

3.7 User example . 7

4 Module Index 9

4.1 Modules . 9

5 Module Documentation 11

5.1 TOEPLITZ module . 11

5.1.1 Detailed Description . 11

5.2 user interface (API) . 11

5.2.1 Detailed Description . 11

5.3 multithreaded/sequential routines . 12

5.3.1 Detailed Description . 12

5.3.2 Function Documentation . 12

5.3.2.1 gstbmm . 13

ii CONTENTS

5.3.2.2 reset_gaps . 13

5.3.2.3 stbmm . 14

5.3.2.4 stmm . 14

5.3.2.5 stmm_core . 15

5.3.2.6 tpltz_cleanup . 16

5.3.2.7 tpltz_init . 16

5.4 distributed memory (MPI) routines . 17

5.4.1 Detailed Description . 17

5.4.2 Function Documentation . 17

5.4.2.1 mpi_gstbmm . 17

5.4.2.2 mpi_stbmm . 18

5.4.2.3 mpi_stmm . 19

5.5 internal routines . 19

5.5.1 Detailed Description . 19

5.6 low-level routines . 20

5.6.1 Detailed Description . 20

5.6.2 Function Documentation . 20

5.6.2.1 build_gappy_blocks 20

5.6.2.2 circ_init_fftw . 21

5.6.2.3 fftw_init_omp_threads 21

5.6.2.4 optimal_blocksize 21

5.6.2.5 rhs_init_fftw . 22

5.6.2.6 scmm_basic . 22

5.6.2.7 scmm_direct . 23

5.6.2.8 stmm_reshape . 23

5.7 lower internal routines . 24

5.7.1 Detailed Description . 25

5.7.2 Function Documentation . 25

5.7.2.1 copy_block . 25

5.7.2.2 get_overlapping_blocks_params 25

5.7.2.3 nfftblock2vect . 25

5.7.2.4 print_error_message 26

5.7.2.5 vect2nfftblock . 26

Generated on Mon May 7 2012 11:11:44 for MIDAPACK - MIcrowave Data Analysis PACKage by Doxygen

Chapter 1

MIDAPACK library

1.1 General description

The goal of the MIDAS project is to provide high performance, middle-layer software
tools, which would aid CMB data analysis efforts, for current and planned CMB ex-
periments, to capitalize on the computational power of parallel (super)computers. The
functionality provided by the library is supposed to fill in the gap in between available,
low-level, high performance software packages such as Fast Fourier Transforms, dense
and sparse linear algebra operations, etc, and the high-level data analysis pipelines, and
thus to help the users to benefit from the former, while developing the latter in a more
straightforward and transparent way. At the end of the project the library is supposed to
provide functionality relevant to all main stages of the data analysis.

For more information about ANR MIDAS’09 project, and to find out how to contact us,
see:

http://www.apc.univ-paris7.fr/APC_CS/Recherche/Adamis/MIDAS09/index.html

The first installement of the library is a Toeplitz algebra package described below.

This documentation covers the following topics:

• Toeplitz algebra documentation

• MIDAPACK development team

1.1.1 ACKNOWLEDGMENT:

This work has been supported in part by French National Research Agency (ANR)
through its COSINUS program (project MIDAS no. ANR-09-COSI-009). High perfor-
mance computing resources have been provided:

• in France by CCRT, TGCC, and IDRIS supercomputing centers under the GENCI
program through projects: 2011-066647 and 2012-066647;

http://www.apc.univ-paris7.fr/APC_CS/Recherche/Adamis/MIDAS09/index.html

2 MIDAPACK library

• in the US by the National Energy Research Scientific Computing Center, which
is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.

Generated on Mon May 7 2012 11:11:44 for MIDAPACK - MIcrowave Data Analysis PACKage by Doxygen

Chapter 2

MIDAPACK development team

The MIDAPACK development team:

• Pierre Cargemel (developer);

• Frédéric Dauvergne (developer);

• Giulio Fabbian (validator);

• Laura Grigori (coordinator);

• Maude Le Jeune (senior developer);

• Antoine Rogier (developer - till Aug 31, 2011);

• Mikolaj Szydlarski (developer);

• Radek Stompor (coordinator).

4 MIDAPACK development team

Generated on Mon May 7 2012 11:11:44 for MIDAPACK - MIcrowave Data Analysis PACKage by Doxygen

Chapter 3

Toeplitz algebra documentation

• Introduction

• Functionality

• Programming models

• Data distribution and load balancing

• Availability and bug tracking

• Installation

• User example

3.1 Introduction

Toeplitz matrices are ubiquitous in the CMB data analysis as they describe correla-
tion properties of stationary time-domain processes (usually instrumental noise). The
matrices relevant are therefore symmetric and non-negative definite. They are also
band-diagonal as the noise correlation length, i.e., the band-width in the parlance of
Toeplitz algebra, is typically much shorter than length of the data. A useful and impor-
tant generalization of those include :

• symmetric, block-diagonal Toeplitz matrices - describing piece-wise stationary
processes, each of the blocks is in turn a symmetric, band-diagonal matrix, which
can be different for the different blocks.

3.2 Functionality

The Toeplitz algebra package described here provides functionality for calculating prod-
ucts of a Toeplitz matrix (understood as one of those described above) and a general
matrix. The latter is referred to hereafter typically as a data matrix.

6 Toeplitz algebra documentation

The list of specific functions provided is as follows:

• symmetric band Toeplitz matrix-matrix product;

• symmetric block-diagonal Toeplitz matrix-matrix product;

• symmetric block-diagonal Toeplitz matrix-matrix product with missing samples
(gaps).

3.3 Programming models

The Toeplitz algebra library routines allow the user to take advantage of both multi-
threaded and memory-distributed programming paradigms and are therefore adapted
to run efficiently on heteregeneous computer architectures. The multithreading is im-
plemented using openMP directives, while distributed programming uses MPI. Both
shared and/or distributed parallelism can be switched of, at the compilation time, if so
desired. Moreover, the user has always access to two versions of each of the routines:
openMP/MPI and openMP-only.

We note that the MPI version of the routines are essentially just wrappers on open-
MP/sequential versions of the corresponding routines, which facilitate necessary data
exchanges between distributed MPI processes.

3.4 Data distribution and load balancing

In the memory-distributed (MPI) running modes, the data input matrix is assumed to be
distributed in between the MPI processes (nodes, processors, etc). The library routines
allow for essentially any distribution of the data with a single constraint that a number
of data points assigned to any process taking part in the calculation is not smaller than
the half band-width of the Toeplitz matrix.

In all the cases, the layout of the output coincides with that of the input.

3.5 Availability and bug tracking

You can download the last release from the official website of the ANR-MIDAS’09 project
at http://www.apc.univ-paris7.fr/APC_CS/Recherche/Adamis/MIDAS09/software/midapack/

Please report any bugs via bug tracker at: http://code.google.com/p/cmb-da-library/

3.6 Installation

This software is reported to work on several Linux distributions and should work on any
modern Unix-like system after minimal porting efforts.

Generated on Mon May 7 2012 11:11:44 for MIDAPACK - MIcrowave Data Analysis PACKage by Doxygen

http://www.apc.univ-paris7.fr/APC_CS/Recherche/Adamis/MIDAS09/software/midapack/
http://code.google.com/p/cmb-da-library/

3.7 User example 7

The source code is delivered in a set of directories :

• The /src directory contains the sources files for the core library. It’s composed by
the differents modules of the MIDAS CMB DA library (please refer to the website
for more details). You can directly compile theses files and link the generated
binaries with your own program.

• The /test directory contains some Utility/demonstration programs to show some
examples of how to use the library fonctionnalities.

3.7 User example

Here is a short example showing how to use it:

// sequential use
fftw_complex *V_fft, *T_fft;
double *V_rfft;
fftw_plan plan_f, plan_b;
tpltz_init(v1_size, lambda , &nfft, &blocksize, &T_fft, T, &V_fft, &V_rfft, &pla

n_f, &plan_b);
stmm(V, n, m, id0, local_V_size, T_fft, lambda, V_fft, V_rfft, plan_f, plan_b, b

locksize, nfft);
tpltz_cleanup(&T_fft, &V_fft, &V_rfft, &plan_f, &plan_b);

// MPI use
MPI_Scatterv(V, nranks, displs, MPI_DOUBLE, Vrank, maxsize, MPI_DOUBLE, 0, MPI_C

OMM_WORLD);
mpi_stbmm(&Vrank, n, m, nrow, T, nb_blocks, nb_blocks, lambda, idv, id0, local_V

_size, MPI_COMM_WORLD);
MPI_Gatherv(Vrank, nranks[rank], MPI_DOUBLE, TV, nranks, displs, MPI_DOUBLE, 0,

MPI_COMM_WORLD);

Generated on Mon May 7 2012 11:11:44 for MIDAPACK - MIcrowave Data Analysis PACKage by Doxygen

8 Toeplitz algebra documentation

Generated on Mon May 7 2012 11:11:44 for MIDAPACK - MIcrowave Data Analysis PACKage by Doxygen

Chapter 4

Module Index

4.1 Modules

Here is a list of all modules:

TOEPLITZ module . 11

user interface (API) . 11
multithreaded/sequential routines . 12
distributed memory (MPI) routines 17

internal routines . 19
low-level routines . 20
lower internal routines . 24

10 Module Index

Generated on Mon May 7 2012 11:11:44 for MIDAPACK - MIcrowave Data Analysis PACKage by Doxygen

Chapter 5

Module Documentation

5.1 TOEPLITZ module

Modules

• user interface (API)

• internal routines

5.1.1 Detailed Description

Toeplitz matrix algebra module

5.2 user interface (API)

Modules

• multithreaded/sequential routines

• distributed memory (MPI) routines

5.2.1 Detailed Description

These routines provide main functionality of the Toeplitz algebra library. They are di-
vided in two groups:

• shared-memory: multithreaded (openMP/sequential) routines

• distributed-memory (MPI) routines

12 Module Documentation

5.3 multithreaded/sequential routines

Functions

• int tpltz_init (int n, int lambda, int ∗nfft, int ∗blocksize, fftw_complex ∗∗T_fft, dou-
ble ∗T, fftw_complex ∗∗V_fft, double ∗∗V_rfft, fftw_plan ∗plan_f, fftw_plan ∗plan_-
b)

Initialize block size and all the fftw arrays and plans needed for the computation.

• int tpltz_cleanup (fftw_complex ∗∗T_fft, fftw_complex ∗∗V_fft, double ∗∗V_rfft,
fftw_plan ∗plan_f, fftw_plan ∗plan_b)

Clean fftw workspace used in the Toeplitz matrix matrix product’s computation.

• int stmm_core (double ∗∗V, int n, int m, fftw_complex ∗T_fft, int blocksize, int
lambda, fftw_complex ∗V_fft, double ∗V_rfft, int nfft, fftw_plan plan_f, fftw_plan
plan_b, int flag_offset)

Perform the stand alone product of a Toeplitz matrix by a matrix using the sliding
window algorithm.

• int stmm (double ∗∗V, int n, int m, int id0, int l, fftw_complex ∗T_fft, int lambda,
fftw_complex ∗V_fft, double ∗V_rfft, fftw_plan plan_f, fftw_plan plan_b, int block-
size, int nfft)

Perform the product of a Toeplitz matrix by a general matrix using the sliding window
algorithm with optimize reshaping.

• int reset_gaps (double ∗∗V, int id0, int local_V_size, int m, int nrow, int ∗id0gap,
int ∗lgap, int ngap)

Set the data to zeros at the gaps location.

• int stbmm (double ∗∗V, int ∗n, int m, int nrow, double ∗T, int nb_blocks_local, int
nb_blocks_all, int ∗lambda, int ∗idv, int idp, int local_V_size)

Performs the multiplication of a symmetric, Toeplitz block-diagonal matrix, T, by an
arbitrary matrix, V, distributed over processes in the generalized column-wise way.

• int gstbmm (double ∗∗V, int ∗n, int m, int nrow, double ∗T, int nb_blocks_local,
int nb_blocks_all, int ∗lambda, int ∗idv, int id0p, int local_V_size, int ∗id0gap, int
∗lgap, int ngap)

Performs the multiplication of a symmetric, Toeplitz block-diagonal matrix, T, by an
arbitrary matrix, V, distributed over processes in the generalized column-wise way. This
matrix V contains defined gaps which represents the useless data for the comutation.
The gaps indexes are defined in the global time space as the generized toeplitz matrix,
meaning the row dimension. Each of his diagonal blocks is a symmetric, band-diagonal
Toeplitz matrix, which can be different for each block.

5.3.1 Detailed Description

These are shared-memory routines.

5.3.2 Function Documentation

Generated on Mon May 7 2012 11:11:44 for MIDAPACK - MIcrowave Data Analysis PACKage by Doxygen

5.3 multithreaded/sequential routines 13

5.3.2.1 int gstbmm (double ∗∗ V, int ∗ n, int m, int nrow, double ∗ T, int nb blocks local, int
nb blocks all, int ∗ lambda, int ∗ idv, int id0p, int local V size, int ∗ id0gap, int ∗ lgap,
int ngap)

Performs the multiplication of a symmetric, Toeplitz block-diagonal matrix, T, by an ar-
bitrary matrix, V, distributed over processes in the generalized column-wise way. This
matrix V contains defined gaps which represents the useless data for the comutation.
The gaps indexes are defined in the global time space as the generized toeplitz matrix,
meaning the row dimension. Each of his diagonal blocks is a symmetric, band-diagonal
Toeplitz matrix, which can be different for each block.

We first rebuild the Toeplitz block matrix structure to reduce the computation cost and
skip the computations of the values on the defined gaps. then, each process performs
the multiplication sequentially for each of the gappy block and based on the sliding win-
dow algorithm. Prior to that MPI calls are used to exchange data between neighboring
process. The parameters are :

Parameters
V [input] distributed data matrix (with the convention V(i,j)=V[i+j∗n]) ; [out] re-

sult of the product TV
n number of rows for each Toeplitz block as stored in T
m number of columns of the global data matrix V

nrow number of rows of the global data matrix V
T Toeplitz matrix composed of the non-zero entries of the first row of each

Toeplitz block and concatenated together have to be arranged in the increas-
ing order of n without repetitions and overlaps.

nb_blocks_-
all

number of all Toeplitz block on the diagonal of the full Toeplitz matrix

nb_blocks_-
local

number of Toeplitz blocks as stored in T

lambda half bandwith size for each Toeplitz block stroed in T
idv global row index defining for each Toeplitz block as stored in the vector T first

element of the interval to which given Toeplitz matrix is to be applied.
id0p global index of the first element of the local part of V

local_V_size number of all elements in local V
id0gap index of the first element of each defined gap

lgap length of each defined gaps
ngap number of defined gaps

Definition at line 253 of file toeplitz_seq.c.

5.3.2.2 int reset gaps (double ∗∗ V, int id0, int local V size, int m, int nrow, int ∗ id0gap, int
∗ lgap, int ngap)

Set the data to zeros at the gaps location.

The data located within the gaps are set to zero. The gaps are defined in the time
domain, meaning their indexes are defined in the row dimension.

Definition at line 1680 of file toeplitz.c.

Generated on Mon May 7 2012 11:11:44 for MIDAPACK - MIcrowave Data Analysis PACKage by Doxygen

14 Module Documentation

5.3.2.3 int stbmm (double ∗∗ V, int ∗ n, int m, int nrow, double ∗ T, int nb blocks local, int
nb blocks all, int ∗ lambda, int ∗ idv, int idp, int local V size)

Performs the multiplication of a symmetric, Toeplitz block-diagonal matrix, T, by an arbi-
trary matrix, V, distributed over processes in the generalized column-wise way.

Each process performs the multiplication sequentially for each diagonal block and based
on the sliding window algorithm. Prior to that MPI calls are used to exchange data be-
tween neighboring process. Each of the diagonal blocks is a symmetric, band-diagonal
Toeplitz matrix, which can be different for each block. The parameters are :

Parameters
V [input] distributed data matrix (with the convention V(i,j)=V[i+j∗n]) ; [out] re-

sult of the product TV
n number of rows for each Toeplitz block as stored in T
m number of columns of the global data matrix V

nrow number of rows of the global data matrix V
T Toeplitz matrix composed of the non-zero entries of the first row of each

Toeplitz block and concatenated together have to be arranged in the increas-
ing order of n without repetitions and overlaps.

nb_blocks_-
all

number of all Toeplitz block on the diagonal of the full Toeplitz matrix

nb_blocks_-
local

number of Toeplitz blocks as stored in T

lambda half bandwith size for each Toeplitz block stroed in T
idv global row index defining for each Toeplitz block as stored in the vector T first

element of the interval to which given Toeplitz matrix is to be applied.
idp global index of the first element of the local part of V

local_V_size a number of all elements in local V

Definition at line 71 of file toeplitz_seq.c.

5.3.2.4 int stmm (double ∗∗ V, int n, int m, int id0, int l, fftw complex ∗ T fft, int lambda,
fftw complex ∗ V fft, double ∗ V rfft, fftw plan plan f, fftw plan plan b, int blocksize,
int nfft)

Perform the product of a Toeplitz matrix by a general matrix using the sliding window
algorithm with optimize reshaping.

The input matrix is formatted into an optimize matrix depending on the block size and
the number of simultaneous ffts (defined with the variable nfft). The obtained number of
columns represent the number of vectors FFTs of which are computed simulatenously.
The multiplication is then performed block-by-block with the chosen block size using the
core routine. The parameters are :

Parameters
V [input] data matrix (with the convention V(i,j)=V[i+j∗n]) ; [out] result of the

product TV
n number of rows of V

Generated on Mon May 7 2012 11:11:44 for MIDAPACK - MIcrowave Data Analysis PACKage by Doxygen

5.3 multithreaded/sequential routines 15

m number of columns of V
id0 first index of V

l length of V
T_fft complex array used for FFTs

lambda Toeplitz band width
V_fft complex array used for FFTs

V_rfft real array used for FFTs
plan_f fftw plan forward (r2c)

plan_b fftw plan backward (c2r)
blocksize block size

nfft number of simultaneous FTTs

Definition at line 833 of file toeplitz.c.

5.3.2.5 int stmm core (double ∗∗ V, int n, int m, fftw complex ∗ T fft, int blocksize, int
lambda, fftw complex ∗ V fft, double ∗ V rfft, int nfft, fftw plan plan f, fftw plan
plan b, int flag offset)

Perform the stand alone product of a Toeplitz matrix by a matrix using the sliding window
algorithm.

The product is performed block-by-block with a defined block size or a computed op-
timized block size that reflects a trade off between cost of a single FFT of a length
block_size and a number of blocks needed to perform the mutiplicaton. The latter de-
termines how many spurious values are computed extra due to overlaps between the
blocks. Use flag_offset=0 for "classic" algorithm and flag_offset=1 to put an offset to
avoid the first and last lambdas terms. Usefull when a reshaping was done before with
optimal column for a nfft. Better be inside the arguments of the routine. The parameters
are:

Parameters
V [input] data matrix (with the convention V(i,j)=V[i+j∗n]) ; [out] result of the

product TV
n number of rows of V
m number of columns of V

T_fft complex array used for FFTs
blocksize block size used in the sliding window algorithm

lambda Toeplitz band width
V_fft complex array used for FFTs

V_rfft real array used for FFTs
nfft number of simultaneous FFTs

plan_f fftw plan forward (r2c)
plan_b fftw plan backward (c2r)

flag_offset flag to avoid extra 2∗lambda padding to zeros on the edges

Definition at line 515 of file toeplitz.c.

Generated on Mon May 7 2012 11:11:44 for MIDAPACK - MIcrowave Data Analysis PACKage by Doxygen

16 Module Documentation

5.3.2.6 int tpltz cleanup (fftw complex ∗∗ T fft, fftw complex ∗∗ V fft, double ∗∗ V rfft,
fftw plan ∗ plan f, fftw plan ∗ plan b)

Clean fftw workspace used in the Toeplitz matrix matrix product’s computation.

Destroy fftw plans, free memory and reset fftw workspace.

See also

tpltz_init

Parameters
T_fft complex array used for FFTs
V_fft complex array used for FFTs

V_rfft real array used for FFTs
plan_f fftw plan forward (r2c)
plan_b fftw plan backward (c2r)

Definition at line 324 of file toeplitz.c.

5.3.2.7 int tpltz init (int n, int lambda, int ∗ nfft, int ∗ blocksize, fftw complex ∗∗ T fft, double
∗ T, fftw complex ∗∗ V fft, double ∗∗ V rfft, fftw plan ∗ plan f, fftw plan ∗ plan b)

Initialize block size and all the fftw arrays and plans needed for the computation.

Initialize the fftw arrays and plans is necessary before any computation of the Toeplitz
matrix matrix product. Use tpltz_cleanup afterwards.

See also

tpltz_cleanup

Parameters
n row size of the matrix used for later product

lambda Toeplitz band width
nfft maximum number of FFTs you want to compute at the same time

blocksize optimal block size used in the sliding window algorithm to compute an opti-
mize value)

T_fft complex array used for FFTs
T Toeplitz matrix

V_fft complex array used for FFTs
V_rfft real array used for FFTs

plan_f fftw plan forward (r2c)
plan_b fftw plan backward (c2r)

Definition at line 186 of file toeplitz.c.

Generated on Mon May 7 2012 11:11:44 for MIDAPACK - MIcrowave Data Analysis PACKage by Doxygen

5.4 distributed memory (MPI) routines 17

5.4 distributed memory (MPI) routines

Functions

• int mpi_stmm (double ∗∗V, int n, int m, int id0, int l, double ∗T, int lambda, MPI_-
Comm comm)

Perform the multiplication of a Toeplitz matrix by a matrix with MPI. We assume that
the matrix has already been scattered.

• int mpi_stbmm (double ∗∗V, int ∗n, int m, int nrow, double ∗T, int nb_blocks_-
local, int nb_blocks_all, int ∗lambda, int ∗idv, int idp, int local_V_size, MPI_Comm
comm)

Performs the multiplication of a symmetric, Toeplitz block-diagonal matrix, T, by an
arbitrary matrix, V, distributed over processes in the generalized column-wise way.

• int mpi_gstbmm (double ∗∗V, int ∗n, int m, int nrow, double ∗T, int nb_blocks_-
local, int nb_blocks_all, int ∗lambda, int ∗idv, int id0p, int local_V_size, int ∗id0gap,
int ∗lgap, int ngap, MPI_Comm comm)

Performs the multiplication of a symmetric, Toeplitz block-diagonal matrix, T, by an
arbitrary matrix, V, distributed over processes in the generalized column-wise way. This
matrix V contains defined gaps which represents the useless data for the comutation.
The gaps indexes are defined in the global time space as the generized toeplitz matrix,
meaning the row dimension. Each of his diagonal blocks is a symmetric, band-diagonal
Toeplitz matrix, which can be different for each block.

5.4.1 Detailed Description

These are distributed-memory routines.

5.4.2 Function Documentation

5.4.2.1 int mpi gstbmm (double ∗∗ V, int ∗ n, int m, int nrow, double ∗ T, int nb blocks local,
int nb blocks all, int ∗ lambda, int ∗ idv, int id0p, int local V size, int ∗ id0gap, int ∗
lgap, int ngap, MPI Comm comm)

Performs the multiplication of a symmetric, Toeplitz block-diagonal matrix, T, by an ar-
bitrary matrix, V, distributed over processes in the generalized column-wise way. This
matrix V contains defined gaps which represents the useless data for the comutation.
The gaps indexes are defined in the global time space as the generized toeplitz matrix,
meaning the row dimension. Each of his diagonal blocks is a symmetric, band-diagonal
Toeplitz matrix, which can be different for each block.

We first rebuild the Toeplitz block matrix structure to reduce the computation cost and
skip the computations of the values on the defined gaps. then, each process performs
the multiplication sequentially for each of the gappy block and based on the sliding win-
dow algorithm. Prior to that MPI calls are used to exchange data between neighboring
process. The parameters are :

Parameters

Generated on Mon May 7 2012 11:11:44 for MIDAPACK - MIcrowave Data Analysis PACKage by Doxygen

18 Module Documentation

V [input] distributed data matrix (with the convention V(i,j)=V[i+j∗n]) ; [out] re-
sult of the product TV

n number of rows for each Toeplitz block as stored in T
m number of columns of the global data matrix V

nrow number of rows of the global data matrix V
T Toeplitz matrix composed of the non-zero entries of the first row of each

Toeplitz block and concatenated together have to be arranged in the increas-
ing order of n without repetitions and overlaps.

nb_blocks_-
all

number of all Toeplitz block on the diagonal of the full Toeplitz matrix

nb_blocks_-
local

number of Toeplitz blocks as stored in T

lambda half bandwith size for each Toeplitz block stroed in T
idv global row index defining for each Toeplitz block as stored in the vector T first

element of the interval to which given Toeplitz matrix is to be applied.
id0p global index of the first element of the local part of V

local_V_size number of all elements in local V
id0gap index of the first element of each defined gap

lgap length of each defined gaps
ngap number of defined gaps

comm MPI communicator

Definition at line 1576 of file toeplitz.c.

5.4.2.2 int mpi stbmm (double ∗∗ V, int ∗ n, int m, int nrow, double ∗ T, int nb blocks local,
int nb blocks all, int ∗ lambda, int ∗ idv, int idp, int local V size, MPI Comm comm)

Performs the multiplication of a symmetric, Toeplitz block-diagonal matrix, T, by an arbi-
trary matrix, V, distributed over processes in the generalized column-wise way.

Each process performs the multiplication sequentially for each diagonal block and based
on the sliding window algorithm. Prior to that MPI calls are used to exchange data be-
tween neighboring process. Each of the diagonal blocks is a symmetric, band-diagonal
Toeplitz matrix, which can be different for each block. The parameters are :

Parameters
V [input] distributed data matrix (with the convention V(i,j)=V[i+j∗n]) ; [out] re-

sult of the product TV
n number of rows for each Toeplitz block as stored in T
m number of columns of the global data matrix V

nrow number of rows of the global data matrix V
T Toeplitz matrix composed of the non-zero entries of the first row of each

Toeplitz block and concatenated together have to be arranged in the increas-
ing order of n without repetitions and overlaps.

nb_blocks_-
all

number of all Toeplitz block on the diagonal of the full Toeplitz matrix

nb_blocks_-
local

number of Toeplitz blocks as stored in T

Generated on Mon May 7 2012 11:11:44 for MIDAPACK - MIcrowave Data Analysis PACKage by Doxygen

5.5 internal routines 19

lambda half bandwith size for each Toeplitz block stroed in T
idv global row index defining for each Toeplitz block as stored in the vector T first

element of the interval to which given Toeplitz matrix is to be applied.
idp global index of the first element of the local part of V

local_V_size a number of all elements in local V
comm MPI communicator

Definition at line 1090 of file toeplitz.c.

5.4.2.3 int mpi stmm (double ∗∗ V, int n, int m, int id0, int l, double ∗ T, int lambda,
MPI Comm comm)

Perform the multiplication of a Toeplitz matrix by a matrix with MPI. We assume that the
matrix has already been scattered.

The multiplication is performed using FFT applied to circulant matrix in order to diago-
nalized it. The parameters are :

Parameters
V [input] distributed data matrix (with the convention V(i,j)=V[i+j∗n]); [out] result

of the product TV
n number of rows of V
m number of columns of V

id0 first index of scattered V
l length of the scattered V

T Toeplitz matrix.
lambda Toeplitz band width.

comm communicator (usually MPI_COMM_WORLD)

Definition at line 946 of file toeplitz.c.

5.5 internal routines

Modules

• low-level routines
• lower internal routines

5.5.1 Detailed Description

These are auxiliary, internal routines, not intended to be used by no-expert user. They
are divided in two groups:

• low level routines

• internal routines

Generated on Mon May 7 2012 11:11:44 for MIDAPACK - MIcrowave Data Analysis PACKage by Doxygen

20 Module Documentation

5.6 low-level routines

Functions

• int optimal_blocksize (int n, int lambda, int bs_flag)

Compute an optimal block size value used in the sliding windows algorithm.

• int fftw_init_omp_threads ()

Initialize omp threads for fftw plans.

• int rhs_init_fftw (int ∗nfft, int fft_size, fftw_complex ∗∗V_fft, double ∗∗V_rfft, fftw_-
plan ∗plan_f, fftw_plan ∗plan_b, int fftw_flag)

Initialize fftw array and plan for the right hand side matrix V.

• int circ_init_fftw (double ∗T, int fft_size, int lambda, fftw_complex ∗∗T_fft)

Initialize fftw array and plan for the circulant matrix T_circ obtained from T.

• int scmm_direct (int fft_size, fftw_complex ∗C_fft, int ncol, double ∗V_rfft, double
∗∗CV, fftw_complex ∗V_fft, fftw_plan plan_f_V, fftw_plan plan_b_CV)

Performs the product of a circulant matrix C_fft by a matrix V_rfft using fftw plans.

• int scmm_basic (double ∗∗V, int blocksize, int m, fftw_complex ∗C_fft, int lambda,
double ∗∗CV, fftw_complex ∗V_fft, double ∗V_rfft, int nfft, fftw_plan plan_f_V,
fftw_plan plan_b_CV)

Perform the product of a circulant matrix by a matrix using FFT’s.

• int stmm_reshape (double ∗∗V, int n, int m, int id0, int l, fftw_complex ∗T_fft, int
lambda, fftw_complex ∗V_fft, double ∗V_rfft, fftw_plan plan_f, fftw_plan plan_b,
int blocksize, int nfft)

Reshape the data structure to optimize the Toeplitz matrix matrix computation by the
sliding window algorithm and do the computation of the product using the core routine.

• int build_gappy_blocks (int ∗n, int m, int nrow, double ∗T, int nb_blocks_local,
int nb_blocks_all, int ∗lambda, int ∗idv, int ∗id0gap, int ∗lgap, int ngap, int ∗nb_-
blocks_gappy_final, double ∗Tgappy, int ∗idvgappy, int ∗ngappy, int ∗lambdagappy,
int flag_param_distmin_fixed)

Build the gappy Toeplitz block structure to optimise the product computation at gaps
location.

5.6.1 Detailed Description

These are low-level routines.

5.6.2 Function Documentation

5.6.2.1 int build gappy blocks (int ∗ n, int m, int nrow, double ∗ T, int nb blocks local,
int nb blocks all, int ∗ lambda, int ∗ idv, int ∗ id0gap, int ∗ lgap, int ngap, int
∗ nb blocks gappy final, double ∗ Tgappy, int ∗ idvgappy, int ∗ ngappy, int ∗
lambdagappy, int flag param distmin fixed)

Build the gappy Toeplitz block structure to optimise the product computation at gaps
location.

Generated on Mon May 7 2012 11:11:44 for MIDAPACK - MIcrowave Data Analysis PACKage by Doxygen

5.6 low-level routines 21

Considering the significant gaps, the blocks to which they belong are cut and split be-
tween the gap’s edges to reduce the total row size of the flotting blocks. It take into
consideration the minimum correlation length and a parameter allows us to control the
minimum gap size allowed for the blocks splitting. In some cases, the gap can be par-
tially reduce to fit the minimum block size needed for computation or just for performance
criteria. This is based on the fact that the gaps are set to zeros in the main routine.

Definition at line 1707 of file toeplitz.c.

5.6.2.2 int circ init fftw (double ∗ T, int fft size, int lambda, fftw complex ∗∗ T fft)

Initialize fftw array and plan for the circulant matrix T_circ obtained from T.

Build the circulant matrix T_circ from T and initilize his fftw arrays and plans. Use tpltz_-
cleanup afterwards.

See also

tpltz_cleanup

Parameters
T Toeplitz matrix.

fft_size effective FFT size for the circulant matrix (usually equal to blocksize)
lambda Toeplitz band width.

T_fft complex array used for FFTs.

Definition at line 281 of file toeplitz.c.

5.6.2.3 int fftw init omp threads ()

Initialize omp threads for fftw plans.

Initialize omp threads for fftw plans. The number of threads used for ffts (define by
the variable n_thread) is read from OMP_NUM_THREAD environment variable. fftw
multithreaded option is controlled by fftw_MULTITHREADING macro.

Definition at line 217 of file toeplitz.c.

5.6.2.4 int optimal blocksize (int n, int lambda, int bs flag)

Compute an optimal block size value used in the sliding windows algorithm.

The optimal block size is computed as the minimum power of two above 3∗lambda,
i.e. the smallest value equal to 2∧x, where x is an integer, and above 3∗lambda. If
bs_flag is set to one, a different formula is used to compute the optimal block size (see
MADmap: A MASSIVELY PARALLEL MAXIMUM LIKELIHOOD COSMIC MICROWAVE
BACKGROUND MAP-MAKER, C. M. Cantalupo, J. D. Borrill, A. H. Jaffe, T. S. Kisner,
and R. Stompor, The Astrophysical Journal Supplement Series, 187:212–227, 2010
March). To avoid using block size much bigger than the matrix, the block size is set to

Generated on Mon May 7 2012 11:11:44 for MIDAPACK - MIcrowave Data Analysis PACKage by Doxygen

22 Module Documentation

3∗lambda when his previous computed size is bigger than the matrix size n. This case
append mostly for small matrix compared to his bandwith.

Parameters
n matrix row dimension

lambda half bandwidth of the Toeplitz matrix
bs_flag flag to use a different formula for optimal block size computation

Definition at line 144 of file toeplitz.c.

5.6.2.5 int rhs init fftw (int ∗ nfft, int fft size, fftw complex ∗∗ V fft, double ∗∗ V rfft,
fftw plan ∗ plan f, fftw plan ∗ plan b, int fftw flag)

Initialize fftw array and plan for the right hand side matrix V.

Initialize fftw array and plan for the right hand side matrix V.

Parameters
nfft maximum number of FFTs you want to compute at the same time

fft_size effective FFT size for the general matrix V (usually equal to blocksize)
V_fft complex array used for FFTs

V_rfft real array used for FFTs
plan_f fftw plan forward (r2c)
plan_b fftw plan backward (c2r)

fftw_flag fftw plan allocation flag

Definition at line 254 of file toeplitz.c.

5.6.2.6 int scmm basic (double ∗∗ V, int blocksize, int m, fftw complex ∗ C fft, int lambda,
double ∗∗ CV, fftw complex ∗ V fft, double ∗ V rfft, int nfft, fftw plan plan f V,
fftw plan plan b CV)

Perform the product of a circulant matrix by a matrix using FFT’s.

This routine multiplies a circulant matrix, represented by C_fft, by a general matrix V, and
stores the output as a matrix CV. In addition the routine requires two workspace objects,
V_fft and V_rfft, to be allocated prior to a call to it as well as two fftw plans: one forward
(plan_f_V), and one backward (plan_b_TV). The sizes of the input general matrix V and
the ouput CV are given by blocksize rows and m columns. They are stored as a vector in
the column-wise order. The circulant matrix, which is assumed to be band-diagonal with
a band-width lambda, is represented by a Fourier transform with its coefficients stored
in a vector C_fft (length blocksize). blocksize also defines the size of the FFTs, which
will be performed and therefore this is the value which has to be used while creating the
fftw plans and allocating the workspaces. The latter are given as: nfft∗(blocksize/2+1)
for V_fft and nfft∗blocksize for V_rfft. The fftw plans should correspond to doing the
transforms of nfft vectors simultaneously. Typically, the parameters of this routine are
fixed by a preceding call to Toeplitz_init(). The parameters are :

Generated on Mon May 7 2012 11:11:44 for MIDAPACK - MIcrowave Data Analysis PACKage by Doxygen

5.6 low-level routines 23

Parameters
V matrix (with the convention V(i,j)=V[i+j∗n])

blocksize row dimension of V
m column dimension of V

C_fft complex array used for FFTs (FFT of the Toeplitz matrix)
lambda half band width Toeplitz

out CV product of the circulant matrix C_fft by the matrix V_rfft
V_fft complex array used for FFTs

V_rfft real array used for FFTs
nfft number of simultaneous FFTs

plan_f_V fftw plan forward (r2c)
plan_b_CV fftw plan backward (c2r)

Definition at line 449 of file toeplitz.c.

5.6.2.7 int scmm direct (int fft size, fftw complex ∗ C fft, int ncol, double ∗ V rfft, double ∗∗
CV, fftw complex ∗ V fft, fftw plan plan f V, fftw plan plan b CV)

Performs the product of a circulant matrix C_fft by a matrix V_rfft using fftw plans.

Performs the product of a circulant matrix C_fft by a matrix V_rfft using fftw plans: for-
ward - plan_f_V; and backward - plan_b_CV. C_fft is a Fourier (complex representation
of the circulant matrix) of length fft_size/2+1; V_rfft is a matrix with ncol columns and
fft_size rows; V_fft is a workspace of fft_size/2+1 complex numbers as required by the
backward FFT (plan_b_CV); CV is the output matrix of the same size as the input V_rfft
one. The FFTs transform ncol vectors simultanously.

Parameters
fft_size row dimension

C_fft complex array used for FFTs
ncol column dimension

V_rfft real array used for FFTs
out CV product of the circulant matrix C_fft by the matrix V_rfft

V_fft complex array used for FFTs
plan_f_V fftw plan forward (r2c)

plan_b_CV fftw plan backward (c2r)

Definition at line 397 of file toeplitz.c.

5.6.2.8 int stmm reshape (double ∗∗ V, int n, int m, int id0, int l, fftw complex ∗ T fft, int
lambda, fftw complex ∗ V fft, double ∗ V rfft, fftw plan plan f, fftw plan plan b, int
blocksize, int nfft)

Reshape the data structure to optimize the Toeplitz matrix matrix computation by the
sliding window algorithm and do the computation of the product using the core routine.

The input matrix is formatted into an optimize matrix depending on the defined block size
and the number of simultaneous ffts (defined as a variable nfft). The obtained number of

Generated on Mon May 7 2012 11:11:44 for MIDAPACK - MIcrowave Data Analysis PACKage by Doxygen

24 Module Documentation

columns represent the number of vectors FFTs of which are computed simulatenously.
The product is then performed block-by-block with the chosen block size using the core
routine. The parameters are :

Parameters
V [input] data matrix (with the convention V(i,j)=V[i+j∗n]); [out] result of the

product TV
n number of rows of V
m number of columns of V

id0 first index of V
l length of V

T_fft complex array used for FFTs
lambda Toeplitz band width

V_fft complex array used for FFTs
V_rfft real array used for FFTs

plan_f fftw plan forward (r2c)
plan_b fftw plan backward (c2r)

blocksize block size used in the sliding window algorithm
nfft number of simultaneous FFTs

you need to put flag_offset=0 as parameter for the stmm_core routine.

Definition at line 635 of file toeplitz.c.

5.7 lower internal routines

Functions

• int print_error_message (int error_number, char const ∗file, int line)

Print error message corresponding to an error number.

• int copy_block (int ninrow, int nincol, double ∗Vin, int noutrow, int noutcol, double
∗Vout, int inrow, int incol, int nblockrow, int nblockcol, int outrow, int outcol, double
norm, int set_zero_flag)

Copy a matrix block from an input matrix inside an output matrix.

• int vect2nfftblock (double ∗V1, int v1_size, double ∗V2, int fft_size, int nfft, int
lambda)

convert the data vector structure into a matrix structure optimized for nfft

• int nfftblock2vect (double ∗V2, int fft_size, int nfft, int lambda, double ∗V1, int
v1_size)

convert the matrix structure optimized for nfft into the data vector structure

• int get_overlapping_blocks_params (int nbloc, int ∗idv, int ∗n, int local_V_size, int
nrow, int idp, int ∗idpnew, int ∗local_V_size_new, int ∗nnew, int ∗ifirstBlock, int
∗ilastBlock)

..Copy a matrix block from an input matrix inside an output matrix.

Generated on Mon May 7 2012 11:11:44 for MIDAPACK - MIcrowave Data Analysis PACKage by Doxygen

5.7 lower internal routines 25

5.7.1 Detailed Description

These are lower internal routines.

5.7.2 Function Documentation

5.7.2.1 int copy block (int ninrow, int nincol, double ∗ Vin, int noutrow, int noutcol, double ∗
Vout, int inrow, int incol, int nblockrow, int nblockcol, int outrow, int outcol, double
norm, int set zero flag)

Copy a matrix block from an input matrix inside an output matrix.

Copy a matrix block of a size nblockrow x nblockcol from the input matrix Vin (size
ninrow x nincol) starting with the element (inrow, incol) to the output matrix Vout (size
notrow x noutcol) starting with the element (outrow, outcol) after multiplying by norm. If
the output matrix is larger than the block the extra elements are either left as they were
on the input or zeroed if zero_flag is set to 1. If the block to be copied is larger than
either the input or the output matrix an error occurs.

Definition at line 348 of file toeplitz.c.

5.7.2.2 int get overlapping blocks params (int nbloc, int ∗ idv, int ∗ n, int local V size, int
nrow, int idp, int ∗ idpnew, int ∗ local V size new, int ∗ nnew, int ∗ ifirstBlock, int ∗
ilastBlock)

..Copy a matrix block from an input matrix inside an output matrix.

Copies a matrix block of a size nblockrow x nblockcol from the input matrix Vin (size
ninrow x nincol) starting with the element (inrow, incol) to the output matrix Vout (size
notrow x noutcol) starting with the element (outrow, outcol) after multiplying by norm. If
the output matrix is larger than the block the extra elements are either left as they were
on the input or zeroed if zero_flag is set to 1. If the block to be copied is larger than
either the input or the output matrix an error occurs.

Definition at line 1424 of file toeplitz.c.

5.7.2.3 int nfftblock2vect (double ∗ V2, int fft size, int nfft, int lambda, double ∗ V1, int
v1 size)

convert the matrix structure optimized for nfft into the data vector structure

Copy only the middle part of the matrix structure into the previous vector structure.
Indeed, we don’t need the extra terms located on the edges of each column used only
to keep the correlation of the datas in the product computation.

Definition at line 786 of file toeplitz.c.

Generated on Mon May 7 2012 11:11:44 for MIDAPACK - MIcrowave Data Analysis PACKage by Doxygen

26 Module Documentation

5.7.2.4 int print error message (int error number, char const ∗ file, int line)

Print error message corresponding to an error number.

Parameters
error_-

number
error number

file file name
line line number

Definition at line 108 of file toeplitz.c.

5.7.2.5 int vect2nfftblock (double ∗ V1, int v1 size, double ∗ V2, int fft size, int nfft, int
lambda)

convert the data vector structure into a matrix structure optimized for nfft

Copy the data vector structure into an equivalent matrix with nfft column. Thus, the
obtained matrix is optimize for the nfft multithreading algorithm use. The middle part is
a direct copy of the data vector and we copy on the edges of each column the lambda
terms needed to fullfill the correlation of theses data.

Definition at line 740 of file toeplitz.c.

Generated on Mon May 7 2012 11:11:44 for MIDAPACK - MIcrowave Data Analysis PACKage by Doxygen

	MIDAPACK library
	General description
	ACKNOWLEDGMENT:

	MIDAPACK development team
	Toeplitz algebra documentation
	Introduction
	Functionality
	Programming models
	Data distribution and load balancing
	Availability and bug tracking
	Installation
	User example

	Module Index
	Modules

	Module Documentation
	TOEPLITZ module
	Detailed Description

	user interface (API)
	Detailed Description

	multithreaded/sequential routines
	Detailed Description
	Function Documentation
	gstbmm
	reset_gaps
	stbmm
	stmm
	stmm_core
	tpltz_cleanup
	tpltz_init

	distributed memory (MPI) routines
	Detailed Description
	Function Documentation
	mpi_gstbmm
	mpi_stbmm
	mpi_stmm

	internal routines
	Detailed Description

	low-level routines
	Detailed Description
	Function Documentation
	build_gappy_blocks
	circ_init_fftw
	fftw_init_omp_threads
	optimal_blocksize
	rhs_init_fftw
	scmm_basic
	scmm_direct
	stmm_reshape

	lower internal routines
	Detailed Description
	Function Documentation
	copy_block
	get_overlapping_blocks_params
	nfftblock2vect
	print_error_message
	vect2nfftblock

