

A History of Supernova Neutrinos

Adam Burrows, Princeton University

Neutrino Transport; 3D turbulence; Explosion is Neutrino-driven

Parallel Evolution: 1930's

Neutrino Physics

- Pauli's suggestion of the v
- Discovery of the neutron
- Fermi β decay

Supernova Physics

 Baade & Zwicky 1933-1934: Neutron stars and supernovae

Parallel Evolution: 1940's

Neutrino Physics

Supernova Physics

 Gamow & Schoenberg 1941 (April 1, Poisson d'Avril!): hot stellar interiors lead to copious emission of neutrinos (URCA?), rapid contraction, rapid outer layer expansion (?), binding energy radiated as neutrinos – supernovae (and novae?)

Parallel Evolution: 1950's

Neutrino Physics

- Parity violation (Yang & Lee 1956)
- Parity Experiment (Wu 1957)
- Helicity (Goldhaber et al. 1957)
- Cowan & Reines 1957
- ν oscillations and e⁻/μ⁻ universality (Pontecorvo)
- V-A theory (Feymann & Gell Mann 1957-1958)

Supernova Physics

 Origin of the elements (Burbidge, Burbidge, Fowler, & Hoyle 1957; Cameron 1950's)

Parallel Evolution: 1960's

Neutrino Physics

- ν_µ neutrino discovered
 (Lederman et al. 1962)
- Weinberg-Salam-Glashow (1967-1968)

Supernova Physics

- H.Y. Chiu (1961, 1964) and neutrinos in stars (and supernovae!)
- Colgate & White 1966
- Arnett 1967 neutrino transport

Parallel Evolution: 1970's

Neutrino Physics

- Weak neutral current discovery (1973)
- Weak Neutral current scattering neutrino processes (Dicus 1972; Freedman (1974) scattering off nuclei, ...)
- v_{τ} discovered (M. Perl 1975)
- Nuclear EOS progress
- Wolfenstein (1978-1979) and neutrino oscillations in matter

Supernova Physics

- J. Wilson (including ν_{μ} transport)
- Wilson and LeBlanc (rapid rotation and MHD)
- Neutrino trapping (Mazurek [1974, without NC]; Sato [1975, with NC]) – v_e degeneracy/high initial lepton number
- Chandrasekhar mass core of massive stars (neutrino cooling)

Parallel Evolution: 1980's

Neutrino Physics

- Discovery of the W/Z (Rubbia & van de Meer 1984)
- MSW oscillation resonant oscillation theory (1985)
- Solar neutrino puzzle solved??

Supernova Physics

- Relevant Neutrino-matter interaction rates (scattering and absorption) coming into focus
- 1D neutrino radiative transport maturing (e.g., Bruenn 1985)
- Delayed mechanism of explosion (Wilson 1985)
- Burrows & Lattimer (1986) (long duration, softer spectrum of burst)
- SN 1987A!!

To the present.....

- Multi-D hydrodynamics (Burrows et al., Herant et al., 1990's...); multi-D transport
- Sophisticated multi-D radiation/ hydrodynamics models: Burrows, Janka, Mezzacappa, Kotake, Yamada, Couch, Ott, Roberts,

Modern Explosion Theory: Neutrino-Powered

Neutrino Reactions in Supernovae

	• $e^- + p \rightleftharpoons n + v_e$
Beta processes:	• $e^+ + n \rightleftharpoons p + \bar{\nu}_e$
	• $e^- + A \rightleftharpoons v_e + A^*$
Neutrino scattering:	• $v + n, p \rightleftharpoons v + n, p$
	• $\nu + A \rightleftharpoons \nu + A$
	• $v + e^{\pm} \rightleftharpoons v + e^{\pm}$
Thermal pair	• $N + N \rightleftharpoons N + N + \nu + \bar{\nu}$
processes:	• $e^+ + e^- \rightleftharpoons v + \bar{v}$
Neutrino-neutrino reactions:	• $v_x + v_e, \bar{v}_e \rightleftharpoons v_x + v_e, \bar{v}_e$
	$(v_x = v_\mu, \bar{v}_\mu, v_\tau, \text{ or } \bar{v}_\tau)$
	• $v_e + \bar{v}_e \rightleftharpoons v_{\mu,\tau} + \bar{v}_{\mu,\tau}$

Important Ingredients/Physics

- Progenitor Models (and initial seed perturbations?)
- Multi-D Hydrodynamics (3D)
- Multi-D Neutrino Transport (most challenging aspect)
- Instabilities Neutrino-Driven Convection (+ SASI)
- Neutrino-Matter Processes Cross sections, emissivities, inelasticities, Many-body, etc.
- General Relativity (May & White; Schwartz; Bruenn et al.; Mueller et al.; Kotake et al.; Roberts et al. 2016; Skinner et al. 2016; Radice et al. 2017)
- Rotation (!)

Some Microphysics Issues

Sub-Dominant Terms/Effects Add "Non-linearly" when near Criticality:

- Nucleon-nucleon Bremsstrahlung (suppression effect at high densities) effect on ν_{μ} luminosities and spectra
- Electron capture on heavies known to a factor of five (?)
- EOS at high densities affecting core radii and contraction
- Strange quark effect on S_A for neutral current scattering (Melson, but ...)
- Full v_{μ} , v_{τ} , and antiparticle transport
- Many-body corrections to neutral- and charged-current scattering and absorption rates

Supernova Neutrino Detection

SUPERK, HYPERK, DUNE, JUNO, ICE CUBE

Consequences of Neutrino Trapping

- ...of lepton number (electrons plus v_e 's)
- Results in degenerate v_e 's in core high average neutrino energies (~250 MeV) high opacity (τ ~10⁵)
- As a result energy and lepton number diffuse out of the core on long time scales (many seconds to ~1 minute)
- Binding energy of a neutron star (~10⁵³ ergs) sets the total energy scale
- Therefore, lower average emergent neutrino energies
- Old theory without trapping: burst duration tens of milliseconds, average energy ~50+ MeV
- New theory with trapping: duration of many seconds, average energy of 10-20 MeV – SN1987A!

Core-Collapse Neutrinos Detected

SN Neutrino Observatories

Super-Kamiokande (Water Cherenkov)

ICECUBE (Longstring Ice)

JUNO (Hydrocarbon Scintillator)

DUNE (Liquid Argon TPC)

Reactions in Detectors

Seadrow et al. 2018

Seadrow et al. 2018

Nucleosynthesis – The effect of neutrino absorption on ejecta

Y_e Histograms: 16-solar-mass model

Vartanyan et al. 2018

Melson et al. (2015, MPA) – 3D (with strangeness correction - likely too large)

Lentz et al. (2015) - ORNL

Summa et al. 2017 (MPA) – rapidly rotating 3D models (but pulsar birth spins?)

Time = 0.677 s

Radice, Burrows et al. (2018) – 11 solar mass