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Neutrino oscillations appear to be a simple quantum mechanical phenomenon. However, a
closer look at them reveals a number of subtle points and apparent paradoxes. Some of the
basic issues of the theory of neutrino oscillations are still being debated. I discuss, from a
historical perspective, how the role of quantum mechanical aspects of neutrino oscillations
was realized in the course of the development of the theory of this phenomenon.

1 Neutrino Oscillations and Quantum Mechanics

I will discuss how the various quantum mechanical (QM) aspects of neutrino oscillations were
realized in the course of the development of the theory of this phenomenon. I will also use this
opportunity to revisit some subtle issues of this theory and discuss their resolution.

Neutrino oscillations is a periodic change of neutrino flavour. Particles usually change their
identity in collisions with other particles or when they decay, so it may look strange that neu-
trinos can change their flavour without any external influence. However, the phenomenon of
oscillations is actually well known in quantum mechanics. A textbook example is a 2-level
quantum system. If one produces the system in one of its stationary states, |Ψ1〉 or |Ψ2〉, its
time evolution is very simple: |Ψ(t)〉 = e−iE1t|Ψ1〉 or |Ψ(t)〉 = e−iE2t|Ψ2〉, respectively. The
probability for the system to remain in such a state does not change with time. However, if the
system is prepared in a state that is a linear superposition of its stationary states,

|Ψ(0)〉 = a|Ψ1〉+ b|Ψ2〉 , (|a|2 + |b|2 = 1) , (1)

its time evolution is more complex:

|Ψ(t)〉 = ae−i E1 t |Ψ1〉+ b e−i E2 t |Ψ2〉 . (2)

The probability that the system will be found in its initial state |Ψ(0)〉 at time t is

Psurv = |〈Ψ(0)|Ψ(t)〉|2 =
∣∣|a|2 e−i E1 t + |b|2 e−i E2 t

∣∣2 (3)
= 1− 4|a|2|b|2 sin2[(E2 − E1) t/2] . (4)



It oscillates with time with the frequency (E2−E1)/2 and the amplitude that takes its maximum
value when |a| = |b| (“maximum mixing”) and vanishes when either a or b is zero (no mixing).
This analogy gives a rather accurate description of the physical essence of neutrino oscillations,
as in the charged-current processes neutrinos are produced (and detected) as flavour eigenstates,
which are non-trivial linear superpositions of the eigenstates of free propagation (mass eigen-
states). The above description in terms of evolution in time of a superposition of stationary
states was actually used in most of the early papers on neutrino oscillations 1,2,3,4,5. It, however,
leaves out the question of how neutrino flavour changes with distance traveled by the neutrinos
(see the discussion of the “time to space conversion” procedure below, though).

1.1 Tricky Issues

Alhough neutrino oscillations appear to be a simple QM phenomenon, a closer look at them
reveals a number of subtle points and apparent paradoxes. A number of fundamental issues
of the theory of neutrino oscillations have been actively debated ever since the idea of the
oscillations was put forward by Pontecorvo 6,7a. These include

• Do neutrino mass eigenstates composing a given flavour eigenstate have same energy or
same momentum?

• Can one use plane waves or stationary states for describing neutrino oscillations?

• Do the oscillations contradict energy-momentum conservation?

• Under what conditions can the oscillations be observed?

• Is wave packet approach necessary for describing neutrino oscillations?

• When are the oscillations described by a universal (i.e. production– and detection–independent)
probability?

• Is the standard oscillation formula correct? What is its domain of applicability?

• How to get correctly normalized oscillation probabilities?

• Are the oscillation probabilities Lorentz invariant?

• Why do we say that charged leptons are produced as mass eigenstates and neutrinos as
flavour states and not the other way around?

• Do neutrinos produced in π → lνl decays oscillate when the charged lepton is not detected?

• Do charged leptons oscillate?

I will now briefly discuss how quantum mechanics allows us to answer these questions.

2 Master Formula for the Probability of Neutrino Oscillations in Vacuum

In the standard approach to neutrino oscillations the state vector describing a flavour eigenstate
neutrino να (α = e, µ, τ, ...) is considered to be a linear superposition of the state vectors of the
mass eigenstate neutrinos νi (i = 1, 2, 3, ...):

|να〉 =
∑

i

U∗
αi |νi〉 , (5)

a The papers debating the basics of the neutrino oscillation theory are too plentiful to be cited here. An
incomplete (but representative) list of references can be found on slide 5 of the presentation slides of this talk at
http://neutrinohistory2018.in2p3.fr/programme.html.

http://neutrinohistory2018.in2p3.fr/programme.html


where U is the leptonic mixing matrix. From this expression one can derive the master formula
for the probability of να → νβ oscillations in vacuum:

Pαβ(L) =
∣∣∣∣∑

i

Uβi e
−i

∆m2
ik

2p
L

U∗
αi

∣∣∣∣2. (6)

How is it usually obtained?

2.1 Simplified Derivations: Same Energy and Same Momentum Approaches

Derivations of the oscillation probability which can be found in many texts typically proceed
as follows. The state vector describing a flavour eigenstate neutrino να produced at time t = 0
and coordinate ~x = 0 is taken to be given by Eq. (5). Assuming that neutrinos are described by
plane waves, the evolved neutrino state after time t at the position ~x is then

|ν(t, ~x)〉 =
∑

i

U∗
αi e

−ipix|νmass
i 〉 . (7)

That is, each mass eigenstate νi picks up the phase factor e−iφi , where

φi ≡ pi x = Eit− ~pi ~x . (8)

Projecting the evolved neutrino state on the flavour eigenstate νβ and taking the squared mod-
ulus yields the oscillation probability

P (να → νβ; t, ~x) = |〈νβ|ν(t, ~x)〉|2 . (9)

To evaluate it, one needs to calculate the phase differences between different mass eigenstates
(the oscillation phases) ∆φik:

∆φ = ∆E · t−∆~p · ~x . (10)

Here the subscripts ik are omitted from ∆φ, ∆E and ∆~p in order to simplify the notation.
Clearly, different neutrino mass eigenstates composing a given flavour state cannot simultane-
ously have the same energy and the same momentum, as otherwise they would have had the
same mass. Therefore in many studies two simplified approaches were adopted:

(a) Same momentum approach. Assume that all the mass eigenstates composing the pro-
duced neutrino flavour state have the same momentum, i.e. ∆~p = 0. Then Eq. (10) gives
∆φ = ∆E · t, and the oscillation probability (9) depends only on the evolution time t. Since for

ultra-relativistic neutrinos Ei =
√

~p 2 + m2
i ' p + m2

i
2p , for the oscillation phase one finds

∆φ = ∆E · t ' ∆m2

2p
t . (11)

Experimentally, the distance between the neutrino source and detector L = |~x| rather than time
of flight t is normally known. It is then usually argued that, as neutrinos propagate with nearly
the speed of light,

L ' t , (12)

and so one can replace t → L in Eq. (11) (in the literature on neutrino oscillations this procedure
is sometimes called “time to space conversion”). With this replacement Eq. (11) yields the usual
oscillation phase, and using it in Eq. (9) leads to the standard oscillation probability (6).

(b) Same energy approach. Assume now that all the mass eigenstates composing the pro-
duced neutrino flavour state have the same energy, i.e. ∆E = 0. Eq. (10) then gives ∆φ = −∆~p·~x.
Assuming ~x||~p (which is well justified when the distance between the neutrino source and detector
is large compared to their transverse sizes) one finds that the oscillation probability (9) depends



only on the distance L. For ultra-relativistic neutrinos one has pi =
√

E2 −m2
i ' E − m2

i
2E , and

the oscillation phase is

∆φ = −∆p · L ' ∆m2

2E
L . (13)

This is the standard expression for the oscillation phase, which depends on the distance L
traveled by neutrinos; unlike in the “same momentum” approach discussed above, it was not
necessary to invoke the “time to space conversion” procedure to arrive at it. The resulting
oscillation probability is again that of Eq. (6).

The above two approaches are very simple and transparent, and allow one to quickly get the
desired result. The trouble with them is that they are both wrong.

The point is that there is no reason whatsoever to expect the neutrino mass eigenstates
composing a flavour state to have either the same energy or the same momentum. These
assumptions actually contradict energy-momentum conservation. This was first demonstrated
by R. Winter8, who considered neutrino emission in orbital electron capture by nuclei – a process
with 2-body final state and simple kinematics. Another process with 2-body final state – charged
pion decay – was discussed in this context by Giunti and Kim 9. Let us follow their argument.

For a π → µν decay at rest, 4-momentum conservation gives for the energy and momentum
of the produced neutrino mass eigenstate νi with mass mi

E2
i =

m2
π

4

(
1−

m2
µ

m2
π

)2

+
m2

i

2

(
1−

m2
µ

m2
π

)
+

m4
i

4m2
π

, (14)

p2
i =

m2
π

4

(
1−

m2
µ

m2
π

)2

− m2
i

2

(
1 +

m2
µ

m2
π

)
+

m4
i

4m2
π

. (15)

Neglecting terms of order m4
i , one finds

Ei ' E + ξ
m2

i

2E
, pi ' E − (1− ξ)

m2
i

2p
, (16)

where

E ' p ≡ mπ

2

(
1−

m2
µ

m2
π

)
' 30 MeV , ξ ≡ 1

2

(
1−

m2
µ

m2
π

)
≈ 0.2. (17)

As can be seen from Eq. (16), same energy and same momentum assumptions correspond to
ξ = 0 and ξ = 1, respectively; in reality, however, ξ is neither 0 nor 1 but about 0.2. Moreover,
if we considered the π → eν decay rather than the π → µν one, we would have to replace mµ

by me in Eqs. (14)-(17); for the parameter ξ this would give ξ ≈ 0.5, which is just in the middle
between the values corresponding to same energy and same momentum assumptions.

Note that the results presented here will require modifications once the intrinsic QM uncer-
tainties of the energies and momenta of all the particles participating in neutrino production are
taken into account. However, the main conclusion remains unchanged: same energy and same
momentum assumptions contradict kinematics and are in general incorrect.

2.2 Same E and Same p Approaches: More Problems

The internal inconsistencies of the “same energy” and “same momentum” approaches to neutrino
oscillations can actually be seen even without invoking energy-momentum conservation. In the
same momentum approach is is assumed that neutrinos have well-defined momentum, i.e. they
are described by plane waves. However, the probability to find a particle described by a plane
wave has no coordinate dependence, i.e. it is the same at any point in space. This means that
propagation of neutrinos in space cannot be accounted for in this case. For neutrino oscillation
experiments it is crucial that neutrinos are produced and detected in distinct regions of space,



the distance between which is the experimental baseline L. However, in the plane-wave approach
one cannot even define the neutrino production and detection regions.

Moreover, the oscillation phase in this case depends only on time (see Eq. (11)). Taken
at face value, this result would lead to an absurd conclusion that in order to observe neutrino
oscillations e.g. in reactor or accelerator neutrino experiments one would not need far detectors
at all – it would be sufficient to put the detector immediately next to the neutrino source and
just wait long enough.

In order to solve this problem, the “time to space conversion” procedure of Eq. (12) is usually
invoked. Let us look at this procedure more carefully. One usually tries to justify it by the fact
that neutrinos are ultra-relativistic, i.e. they propagate with nearly the speed of light. However,
this is not the most important assumption behind Eq. (12). The same argument could be made
even for non-relativistic neutrinos, provided that the different mass eigenstates composing a
given flavour state move with nearly the same speed v � 1 (for which they would have to be
nearly degenerate in mass). In that case one would merely have to replace Eq. (12) by L ≈ vt,
and the rest of the derivation of the oscillation probability would be essentially the same. What
is much more important is that Eq. (12) (as well as its modified version L ≈ vt) is only valid for
point-like particles moving along classical trajectories. But the notion of a point-like particle is
just the opposite of that of a plane wave! So, one tries to combine two incompatible approaches
in this case.

Similarly, same energy assumption based on the evolution of neutrino flavour only in space
cannot account for the fact that neutrinos are produced and detected at certain times.

So, the question is: How can two different and wrong assumptions (same E and same p)
result in the same (and correct) expression for the neutrino oscillation probability? To answer
this question, it is necessary to consider a wave packet approach to neutrino oscillations.

3 Wave Packet Approach: The Basics

In quantum theory localized particles are described by wave packets: instead of a plane wave
one considers superpositions of plane waves with a momentum spread σp around a central
momentum ~p0. This is a consequence of the Heisenberg uncertainty relation: a state localized
within a spatial region σx is characterized by a momentum uncertainty σp & 1/σx. Therefore
it cannot be described by a plane wave, for which σp = 0. In the wave packet approach the
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Figure 1 – Schematic representation of plane wave (left panel) and wave packet (right panel).

coordinate-space wave function of a free particle of mass mi is

Ψi(~x, t) =
∫

d3p

(2π)3
f~p0

(~p) ei~p~x−iEi(p)t , (18)

where f~p0
(~p) is the momentum distribution amplitude with a peak at ~p = ~p0 and a momentum

width σp, and Ei =
√

~p 2 + m2
i . A frequently used example is the Gaussian wave packet:

f~p0
(~p) =

1
(2πσ2

p)3/4
exp

{
−(~p− ~p0)2

4σ2
p

}
. (19)



If one neglects the spreading of the wave packet, the coordinate-space wave function of such a
state takes the form

Ψi(~x, t) = ei~p0~x−iEi(p0)t 1
(2πσ2

x)3/4
exp

{
−(~x− ~vgit)2

4σ2
x

}
, (20)

where ~vgi ≡ [∂Ei(p)/∂~p]~p=~p0
= ~p0/Ei(p0) is the group velocity of the wave packet. Eq. (20)

represents the plane wave corresponding to the central momentum ~p0 modulated by the Gaussian
coordinate-space envelope factor of the width σx = 1/(2σp) (see Fig. 1). The quantity σx is
therefore the spatial length of the wave packet. Note that though the time t and the spatial
coordinate ~x are, strictly speaking, independent, the probability of finding the particle |Ψi(~x, t)|2,
which reaches its maximum at ~x = ~vgit, quickly decreases when |~x − ~vgit| starts exceeding σx.
This holds true for the wave function of any localized state, not just for Gaussian wave packets.

In the wave packet approach the evolved state for a neutrino which was produced as να is

|ν(~x, t)〉 =
∑

i

U∗
αi|νi(~x, t)〉 =

∑
i

U∗
αi Ψi(~x, t)|νi〉 , (21)

where the wave function Ψi(~x, t) of the ith neutrino mass eigenstate is given in Eq. (18). This is
to be compared with the expression for the evolved neutrino state in the plane wave approach (7).
The state of the detected neutrino νβ, on which the evolved state has to be projected in order
to find the transition amplitude, should also be described by a localized wave packet. The wave
packet approach to neutrino oscillations allows one to resolve many paradoxes and confusions
in the oscillation theory.

3.1 Oscillation Phase and the Wave Packet Approach

How can one calculate the oscillation phase (10), now that we know that both the same energy
and same momentum approaches are actually incorrect? Let us take into account that we usually
deal only with highly relativistic neutrinos.b In this case the energy and momentum differences
of the different neutrino mass eigenstates composing a given flavour state are small compared
to their respective average values (∆E � E, ∆p � p). One can therefore expand ∆E as

∆E =
∂E

∂p
∆p +

∂E

∂m2
∆m2 = vg∆p +

1
2E

∆m2 , (22)

where vg is the average group velocity of the neutrino mass eigenstates. Substituting this into
Eq. (10) yields

∆φ = −(L− vgt)∆p +
∆m2

2E
t . (23)

Let us examine this expression. If one adopts the (incorrect) same momentum approach, ∆p = 0,
the first term on the right hand side (r.h.s.) vanishes, and the oscillation phase (11) is recovered.
Note, however, that the first term on the r.h.s. of (23) vanishes also when ∆p 6= 0 provided that
L = vgt, which corresponds to the center of the neutrino wave packet. Away from the center,
L − vgt does not vanish but, as was discussed above, its value cannot significantly exceed the
spatial length of the wave packet σx. Therefore, the first term on the r.h.s. is negligibly small
and Eq. (11) obtains without the unphysical “same momentum” prescription provided that

σx · |∆p| � 1 . (24)

By the Heisenberg uncertainty relation σx ∼ 1/σp, and therefore Eq. (24) is equivalent to

|∆p| � σp . (25)

bThe following arguments also apply to moderately relativistic as well as to non-relativistic neutrinos provided
that they are nearly degenerate in mass.



In addition, from |L− vgt| . σx it follows that one can replace t → L/vg in the second term on
the r.h.s of Eq. (23) provided that σx is negligibly small compared to the neutrino oscillation
length. This yields the standard oscillation phase ∆φ = [∆m2/(2p)]L.

Quite similarly one can show that the correct oscillation phase leading to the standard
oscillation probability (6) can be obtained without the “same energy” assumption. Expressing
∆p from Eq. (22) and substituting it into Eq. (10), one finds for the oscillation phase

∆φ = − 1
vg

(L − vg t)∆E +
∆m2

2p
L , (26)

which is equivalent to Eq. (23). In the limit ∆E → 0 the first term on the r.h.s. of this equation
vanishes and the results of the “same energy” approach are recovered. However, this term can
also be neglected even when ∆E 6= 0, provided that (σx/vg)|∆E| � 1. As the spatial length of
the wave packet satisfies σx ∼ 1/σp ' vg/σE where σE is the energy uncertainty of the neutrino
state,c we find that the first term on the r.h.s. of Eq. (26) can be neglected when

|∆E| � σE . (27)

We can now answer the question raised at the end of Section 2.1. The wrong “same energy”
and “same momentum” assumptions lead to the correct oscillation probability (6) because

• Neutrinos are relativistic with |∆E| � E, |∆p| � p, so that the expansion in Eq. (22) is
justified.

• In most (if not all) situations of practical interest, energy and momentum differences ∆E
and ∆p are small compared to the intrinsic QM energy and momentum uncertainties of
the neutrino state, i.e. conditions (25) and (27) are satisfied.

As we shall see, Eqs. (25) and (27) are essentially the coherence conditions for neutrino produc-
tion and detection.

4 When Are Neutrino Oscillations Observable? The Role of QM Uncertainties

Quantum mechanics tells us that no particle can have precisely defined values of energy and
momentum – these quantities always have some intrinsic uncertainties. This is due to the fact
that particles are always localized in space and time. In particular, the processes in which
the particles are produced and which actually determine their properties are always confined
to finite space-time intervals. The QM uncertainty principles relate the momentum and energy
uncertainties of a particle, σp and σE , to the spatial extension and the duration of its production
process, σX and σt: d

σp ∼ σ−1
X , σE ∼ σ−1

t . (28)

Usually, energy and momentum uncertainties of the particles are extremely small compared to
their energies and momenta themselves; therefore, in most situations these uncertainties can
be safely neglected. This is, however, not justified when neutrino oscillations are considered.
The reason is that the neutrino energy and momentum uncertainties, as tiny as they are, are
crucially important for the oscillation phenomenon – without them the oscillations just would not
occur. Indeed, as discussed above, if neutrinos were produced, for example, with no momentum
uncertainty, this would mean that their source was completely delocalized in space, and therefore
neutrino oscillations as a function of the distance L between the neutrino source and detector
would be unobservable. Similar arguments apply to the neutrino energy uncertainty.

cThe relation σE ' vgσp follows from the mass-shell condition E2 = ~p 2 + m2.
dStrictly speaking, the QM uncertainty relations read σp ≥ (2σX)−1, σE & (σt)

−1, that is, Eq. (28) should
actually contain inequalities rather than the ∼ symbol. However, except in very special cases of little practical
interest, the relations in Eq. (28) apply.



4.1 Coherence Conditions for Neutrino Production and Detection

The fact that too accurate measurement of neutrino energy and momentum would destroy
neutrino oscillations was first demonstrated by Kayser10. Assume that by measuring the energies
and momenta of all particles participating in a neutrino production process we reconstructed
the energy E and momentum p of the produced neutrino with some accuracy. The errors in the
determination of E and p cannot be smaller than the intrinsic QM uncertainties σE and σp related
to the space-time localization of the production process. Assuming that these uncertainties are
independent, from the mass-shell relation E2 = ~p 2 + m2 one can then infer the squared mass of
the emitted neutrino with the minimum uncertainty

σm2 = [(2EσE)2 + (2pσp)2]1/2 . (29)

If this minimum uncertainty is large compared to the difference between the squared masses
of different neutrino mass eigenstates, i.e. σm2 � |∆m2|, it is in principle impossible to find
out which neutrino mass eigenstate was produced. This means that different neutrino mass
eigenstates are produced coherently; what is actually emitted is a flavour eigenstate (5), which
is a coherent linear superposition of the neutrino mass eigenstates.

Conversely, for σm2 . |∆m2| one can find out which neutrino mass eigenstate has actually
been produced; this means that different mass eigenstates cannot be produced coherently. As
neutrino oscillations are a result of interference of the amplitudes corresponding to different
neutrino mass eigenstates, the absence of their coherence means that no oscillations will take
place. The flavour transition probabilities will then correspond to averaged neutrino oscillations.

Coherence conditions for neutrino production and detection processes can also be formulated
in configuration space. It was demonstrated by Kayser 10 that as soon as σE and σp become
sufficiently small to allow determination of the neutrino mass at neutrino production, the un-
certainty in the coordinate of the neutrino production point becomes larger than the oscillation
length losc = 4πp/∆m2, and so the oscillations get washed out due to the averaging over this
coordinate. Similar arguments apply to neutrino detection. Thus, the production and detection
processes cannot discriminate between different neutrino mass eigenstates (which is a neces-
sary condition for the observability of neutrino oscillations) only when the uncertainties in the
neutrino emission and absorption coordinates are sufficiently small, i.e. when the processes of
neutrino production and detection are sufficiently well localized. For this reason the conditions
of coherent neutrino production and detection are sometimes called the localization conditions.

Coherence of neutrino production and detection in the configuration-space formulation was
also considered in Refs. 11,12,13. Here I discuss it following Ref. 13.

The 4-coordinate of the neutrino production point has an intrinsic uncertainty (δt, δ~x) re-
lated to the finite space-time extension of the production process. This leads to the fluctuations
δφosc ≡ δ(∆φ) of the oscillation phase (10):

δφosc = ∆E · δt−∆~p · δ~x . (30)

For neutrino oscillations to be observable, these fluctuations must be small – otherwise the
oscillations will be washed out upon averaging of the oscillation phase over the 4-coordinate of
neutrino production. That is, a necessary condition for the observability of neutrino oscillations
is

|∆E · δt−∆~p · δ~x| � 1 . (31)

Barring accidental cancellations between the two terms in (31), one can rewrite it as

|∆E · δt| � 1 , |∆~p · δ~x| � 1 . (32)

Now, the fluctuations of the neutrino emission time and coordinate are limited by the temporal
extension of the production process and the spatial size of the production region:

|δt| . σt , |δ~x| . σX . (33)



Taking into account Eq. (28), from (32) we therefore obtain

|∆E| � σE , |∆p| � σp . (34)

These conditions actually have a simple meaning: Different neutrino mass eigenstates can be
emitted coherently and compose a flavour state only if their intrinsic QM energy and momentum
uncertainties, σE and σp, are sufficiently large to accommodate their differing energies and mo-
menta. Similar considerations apply to neutrino detection: energy and momentum uncertainties
related to the space-time localization of the detection process must be large enough to preclude
determination of the neutrino mass, or else the oscillations will be unobservable. If by σE we
understand the smallest between of the energy uncertainties associated with neutrino produc-
tion and detection (and similarly for the momentum uncertainty σp), conditions (34) will ensure
coherence of both neutrino production and detection processes. Note that these conditions coin-
cide with those in Eqs. (25) and (27) which allowed us to obtain the standard oscillation phase
from the general expression (10).

While the coherent production condition in Eq. (31) is obviously Lorentz invariant,e the
conditions in Eq. (34) are not. They follow from (31) only in the absence of cancellations
between the ∆E · δt and ∆~p · δ~x terms. It can be shown that even if this no-cancellation
requirement is met in a reference frame K, it may be violated in reference frames moving with
the speed u ≈ 1 with respect to K provided that 1 − u is small enough 13. In such frames the
inequalities in Eq. (34) do not play the role of the coherent production/detection conditions,
and Eq. (31) should be used instead. In what follows I will be assuming that the no-cancellation
condition is met, so that the inequalities in Eq. (34) do play the role of conditions for coherent
neutrino production and detection.

4.2 Propagation Coherence and Decoherence

For neutrino oscillations to be observable it is not sufficient that the neutrino production and
detection processes be coherent: In addition, coherence must not be (irreversibly) lost during
neutrino propagation from its source to the detector.

How could a loss of neutrino coherence in transit from the source do the detector occur?
This question was first studied by Nussinov in what appears to be the first publication on the
wave packet approach to neutrino oscillations14. The wave packets of the different neutrino mass
eigenstates composing a produced flavour eigenstate propagate with different group velocities.
This is because these velocities, ~vgi ≡ ∂Ei/∂~pi = ~pi/Ei, depend on the neutrino mass mi. Due
to the difference of the group velocities ∆vg, over a time t the centers of the wave packets of the
different neutrino mass eigenstates separate by the distance ∆vgt. Once this distance exceeds
the spatial length of the wave packets σx, the wave packets of different neutrino mass eigenstates
cease to overlap and so lose their coherence. In this case neutrino oscillations cannot be observed.
This can be seen from the fact that, once the wave packets of the different mass eigenstates have
separated in space, one can in principle discriminate between them at detection, e.g., by making
use of the time-of-flight measurement technique.

The coherence time and coherence length can be found from the conditions

∆vg · tcoh ' σx ; lcoh ' vgtcoh , (35)

where in the second equality vg denotes the average group velocity of the mass eigenstates
(recall that we are assuming ∆m2 � E2, so that ∆vg � vg). For ultra-relativistic neutrinos
∆vg ' ∆m2

2E2 , and Eq. (35) yields 14

lcoh '
vg

|∆vg|
σx '

2E2

|∆m2|
σx . (36)

eIndeed, both the oscillation phase and its variation, being products of two 4-vectors, are Lorentz invariant.



Neutrino oscillations can only be observed at the distances L from the neutrino source satisfying
L � lcoh. Although the lengths of the neutrino wave packets σx are usually microscopically small,
the coherence length lcoh is macroscopic and very large because of the huge factor 2E2/∆m2

multiplying σx in the expression for lcoh.
An interesting point, first made by Kiers, Nussinov and Weiss 15,16, is that even if the

wave packets of the different neutrino mass eigenstates composing an emitted flavour state
have separated on their way between the neutrino source and detector, their coherence may be
restored at neutrino detection. The point is that any detection process is not instantaneous –
it takes a finite time σt det (which is related to the ultimate energy resolution of detection σE det

by σt det ∼ σ−1
E det). Assume that the elementary detection process lasts long enough, so that

the wave packets of the different neutrino mass eigenstates, which have separated during the
neutrino propagation, arrive at the detector before the detection is over. Then their detection
amplitudes may add coherently and interfere, leading to observable flavour oscillations. Possible
restoration of propagation coherence at detection can be automatically taken into account if in
the expression for the coherence length in Eq. (36) by σx we understand an “effective” length
of the neutrino wave packet, defined as σx = vg/σE with σE being the smaller between the
QM energy uncertainties associated with neutrino production and detection. In particular,
in the limit σE det → 0 the coherence length formally becomes infinite, i.e. decoherence by
wave packet separation never occurs. Note, however, that for too small σE det the condition of
coherent detection of different neutrino mass eigenstates (34) may be violated. So, the issue of
compatibility of the different coherence conditions should be considered.

4.3 Are Different Coherence Constraints Compatible?

We have found that there are two types of coherence conditions that have to be satisfied in order
for neutrino oscillations to be observable: (i) coherence of neutrino production and detection
and (ii) coherence of neutrino propagation. Before proceeding to discuss their compatibility, let
me make the following point. One can show that under very general assumptions the second
condition in (34) follows from the first one and so is actually redundant 13. That is, the first
condition in (34) by itself ensures coherence of neutrino production and detection.

The production/detection and the propagation coherence conditions, ∆E � σE and L �
lcoh, both put upper limits on the neutrino mass squared difference ∆m2:

∆E ∼ ∆m2

2E
� σE ,

∆m2

2E2
L � σx ' vg/σE . (37)

However, when expressed as constraints on σE , they read (taking into account that vg ≈ 1)

∆m2

2E
� σE � 2E2

∆m2

1
L

, (38)

that is, they constrain σE both from above and from below. A natural question then is: Are
these constraints compatible with each other? With decreasing ∆m2 the left hand side (l.h.s.)
of Eq. (38) decreases, while its r.h.s. increases; so it is clear that the smaller ∆m2, the easier it
is to satisfy the conditions in Eq. (38).f For the two conditions in Eq. (38) to be compatible,
its l.h.s. must be small compared to its r.h.s., which gives

2π
L

losc
� 2E2

∆m2
(� 1) . (39)

It should be stressed that this condition is necessary but in general not sufficient for a mixed
neutrino state to be coherently produced, maintain its coherence over the distance L and then

f By the way, this may already give us a hint on what the answer to the question “Do charged leptons oscillate?”
should be.



be coherently detected: it only ensures the consistency of the two conditions in Eq. (38), but
not their separate fulfilment. Note that from the rightmost inequality in Eq. (38) it follows that
the maximum number of observable oscillations (L/losc)max cannot exceed

lcoh
losc

∼ 1
2π

E

σE
. (40)

In reality, the observable number of oscillations is much smaller: it is obtained from the r.h.s.
of Eq. (40) by replacing σE → δE, where δE is the energy resolution of the detector which is
usually much larger than the ultimate QM energy uncertainty σE . This puts an upper limit on
the baselines at which the oscillations can be observed. For longer baselines, the flavor transition
(and survival) probabilities will correspond to Eq. (6) with all the oscillatory terms replaced by
their averaged values.

4.4 Are They Actually Satisfied?

Are the coherence conditions normally satisfied in neutrino oscillation experiments? For oscilla-
tions between the usual flavour-eigenstate neutrinos νe, νµ and ντ in the 3-flavour scheme, the
coherent production and detection conditions are satisfied with a large margin in all cases of
practical interest. This is a consequence of the tininess of the masses of their mass-eigenstate
counterparts ν1, ν2 and ν3 and is now firmly established by the positive results of the experiments
on atmospheric, reactor and accelerator neutrino oscillations.

A rather obvious though not widely recognized is the fact that even non-observation of
neutrino flavour transitions in experiments with the detector situated too close to the neutrino
source (as it was the case e.g. in ‘prehistoric’ reactor and accelerator neutrino experiments) is a
direct consequence of and a firm evidence for coherence of neutrino production and detection.
Indeed, if coherence was violated, i.e., if different neutrino mass eigenstates were emitted or
absorbed incoherently, one would have observed a suppression of the original neutrino flux (in
the disappearance experiments) or an emergence of “wrong-flavour” neutrinos (in the appearance
experiments) corresponding to the averaged oscillation probabilities.g As the leptonic mixing
angles are relatively large (especially θ23 and θ12), effects of such flavour transitions would have
been quite sizeable.

How about the propagation coherence condition? For 3-flavour oscillations between νe, νµ

and ντ it is satisfied with a large margin for all terrestrial experiments. In particular, from the
atmospheric neutrino experiments we know that the coherence holds over macroscopic distances
as large as about 10,000 km. At the same time, for astrophysical and cosmological neutrinos
which propagate enormous distances before reaching the earth, coherence is lost. Thus, solar and
supernova neutrinos arrive at terrestrial detectors as incoherent mixtures of the mass eigenstates
rather than as flavour eigenstate neutrinos. Cosmic background neutrinos should also at present
be in mass rather than in flavour states.

The situation with coherence of neutrino flavour transitions may, however, be different if
relatively heavy predominantly sterile neutrinos exist. Note that heavy neutrinos with masses
in the eV – keV – MeV (and even GeV) ranges are now being actively discussed in connection
with some hints from short-baseline accelerator experiments (LSND, MiniBooNE), reactor neu-
trino anomaly, anomaly in gallium radioactive source experiments, keV sterile neutrinos as dark
matter, pulsar kicks, leptogenesis via neutrino oscillations, supernova r-process nucleosynthesis,
unconventional contributions to 2β0ν decay, etc. 17. For the corresponding large mass squared
differences the production/detection and propagation coherence conditions may be violated,
leading to important implications. Therefore in situations when large ∆m2 may play a role the
fulfilment of the coherence conditions should be carefully examined in each particular case.

gFor example, in the 2-flavour case the survival probability at short baselines L � losc is Pαα = (sin2 θ +
cos2 θ)2 = 1 in the coherent case and Pαα = sin4 θ + cos4 θ < 1 if coherence is strongly violated at neutrino
production or detection.



5 Wave Packet Approach: Gaussian Wave Packets

So far I have been discussing neutrino production/detection and propagation coherence as nec-
essary conditions for observability of neutrino oscillations in a rather qualitative way, basing
on some very general arguments. Can we see how this works in an explicit calculation? As I
discussed earlier, for this one needs to resort to wave packets.

To the best of my knowledge, the first complete calculation of the oscillation probability
in the wave packet framework was performed by Giunti, Kim and Lee 18,19, though simplified
studies can also be found in some earlier papers (see Section 12 below). Describing neutrinos
by Gaussian wave packets, Giunti et al. found the following expression for the probability of
να → νβ oscillations:

Pαβ(L,E) =
∑
i,k

UαiU
∗
βiU

∗
αkUβke

−i(∆m2
ik/2E)L e−[∆E2

ik/8σ2
E ]−[L/(lcoh)ik]2 . (41)

Here the indices i, k correspond to neutrino mass eigenstates and

(lcoh)ik = 2
√

2
2E2

|∆m2
ik|

σx (42)

is the coherence length (which is to be compared with Eq. (36) found from qualitative argu-
ments). The quantity σE is the effective neutrino energy uncertainty which is expressed through
the energy uncertainties related to neutrino production and detection as

1
σ2

E

=
1

σ2
E prod

+
1

σ2
E det

, (43)

i.e. it is dominated by the smaller of the two. The last exponential factor on the r.h.s. of Eq. (41),

e−[∆E2
ik/8σ2

E ]−[L/(lcoh)ik]2 , (44)

takes into account possible decoherence effects. It strongly suppresses the off-diagonal terms in
the summand of Eq. (41) when either |∆Eik| � σE , which means violation of production or
detection coherence, or L � (lcoh)ik, which implies (irreversible) decoherence by wave packet
separation. The suppression of the off-diagonal terms in (41) would mean that all the oscillatory
terms in the oscillation probability are effectively replaced by their averages, giving

Pαβ(L,E) → P̄αβ ≡
∑

i

|Uαi|2|Uβi|2 , (45)

which is L- and E-independent. Note that the same result is obtained from the standard
expression for the oscillation probability in Eq. (6) upon averaging out all its oscillatory terms.

On the other hand, if the production/detection and propagation coherence conditions are
satisfied for all (i, k), one can replace the last exponential factor in Eq. (41) by unity; the result-
ing probability of flavour transitions then coincides with the standard probability of neutrino
oscillations in vacuum (6).h

6 Wave Packet Approach and the Normalization Problem

In deriving the oscillation probabilities in the wave packet approach, one encounters the fol-
lowing problem: by using the standard normalization of the wave packets in coordinate space∫

d3x|Ψi(t, ~x)|2 = 1 (or equivalently, in momentum space,
∫

[d3p/(2π)3]|f~p0
(~p)|2 = 1) one does

not get the correct normalization for the oscillation probability. Instead, the result differs from
hHere and in most of the following text I neglect the difference between p and E which is justified for ultra-

relativistic neutrinos. The exception is Section 10 where the Lorentz invariance issues are discussed.



the standard oscillation probability by a constant factor. The usual way to circumvent this
difficulty is to introduce arbitrary normalization factors for the wave functions of the produced
and detected neutrino states and then fix them at the end of the calculation by imposing on the
oscillation probabilities the unitarity condition∑

β

Pαβ(L,E) = 1 . (46)

Although it works, this is an ad hoc procedure which looks rather unsatisfactory. Can one avoid
it by using a different normalization of the neutrino wave functions?

It turns out that the answer to this question is negative: no separate (i.e. independent)
normalization of the wave functions of the produced and detected neutrino states would result in
the correctly normalized Pαβ(L,E). For example, if fP

~p0
(~p) and fD

~p0
(~p) are the momentum-space

wave functions of the produced and detected neutrinos (with the indices P and D standing
for production and detection), the correct normalization of the oscillation probability is only
obtained provided the condition ∫

d3p

(2π)3
|fP

~p0
(~p)|2|fD

~p0
(~p)|2 = 1 (47)

is satisfied. That is, in order to obtain the correctly normalized oscillation probability, one
needs to impose a correlated normalization condition for the wave functions of the produced
and detected neutrino states; no separate normalization of them would do the job.

It is, actually, not difficult to understand why this happens. The problem is related to the
wave packet description of the process itself and not to neutrino oscillations: we would have
encountered a similar problem when considering neutrino production and subsequent detection
in the wave packet picture even if there existed just one neutrino species in Nature, i.e. if
the oscillations were absent. The point is that in the wave packet approach each individual
particle (and not just an ensemble of them) is characterized by a spectrum of momenta (and
energies). For the produced and detected neutrinos, the corresponding spectra are dictated
by the character and the properties of the production and detection processes, such as their
localization. The production and detection processes are different, and so are the corresponding
momentum spectra. The detection efficiency therefore depends on the degree of overlap of these
spectra, which is given by the integral on the l.h.s. of Eq. (47). This just reflects energy and
momentum conservation. In particular, in the special case when the overlap is absent, i.e. when
the momentum modes corresponding to detection are absent from the spectrum of the produced
wave packets (which happens when the energy threshold of the detection process is above the
maximum energy of the produced particles), there will be no detection at all.

Coming back to neutrino oscillations, kinematic prohibition of neutrino detection would not,
of course, mean that neutrinos do not oscillate. On the other hand, even if the overlap of the
spectra of the produced and detected neutrinos is perfect, i.e. the integral on the l.h.s. of Eq. (47)
takes its maximum possible value, this does not solve the normalization problem 20. The point
is that the overlap integral is simply not a part of the oscillation probability. Obviously, the
oscillation probability itself should be independent of the efficiency of neutrino detection. In
calculating Pαβ(L,E), all the details of the neutrino production and detection processes should
be factored out and removed. Normalization of Pαβ(L,E) by imposing the unitarity constraint
does just this. I will discuss this point in more detail in the next Section, where the related issue
of universality of the oscillation probabilities is considered.

7 Universal Oscillation Probabilities?

The standard oscillation probability (6) depends only on neutrino energy E and the distance
from the source L, but not on the processes in which the neutrinos were produced and detected.



Under what conditions is this justified? That is, when are neutrino oscillations actually described
by a universal (i.e. production– and detection–independent) probability?

Strictly speaking, in general one should consider neutrino production, propagation and de-
tection as a single process, as only the probability of the complete process, Γαβ(L,E), is directly
related to measurable quantities in oscillation experiments. Under certain conditions Γαβ(L,E)
can be factorized as

Γαβ(L,E) = jα(E) P prop
αβ (L,E)σβ(E) , (48)

where jα(E) is the flux of the produced να, P prop
αβ (L,E) is the probability of neutrino propagation

between its source and detector, which takes into account possible να → νβ transitions and
also includes a geometrical factor describing neutrino flux suppression with increasing distance
L from the source, and σβ(E) is the detection cross section for νβ. If such a factorization
is possible, one can find the oscillation probability Pαβ(L,E) by dividing Γαβ(L,E) by jα(E),
σβ(E) and by the trivial geometric factor of neutrino flux suppression with distance.i If, however,
the factorization (48) turns out to be impossible, the production– and detection–independent
oscillation probability cannot even be defined. In this case one should instead consider the
probability Γαβ(L,E) of the overall neutrino production–propagation–detection process.

So, when is the factorization (48) actually possible? It can be shown 12,20 that for such a
factorization to take place the following conditions must be satisfied:

(a) Neutrinos are ultra-relativistic or quasi-degenerate in mass;

(b) Neutrino production, propagation and detection processes are coherent, i.e. they do not
allow one to discriminate between different neutrino mass eigenstates.

These conditions can be easily understood. The factorization (48) only takes place when all
the three processes – neutrino production, propagation and detection – are independent of each
other. If condition (a) is violated, the composition of the produced neutrino state να in terms
of the mass eigenstates νi will not be given by Eq. (5), but will rather depend sensitively on
the neutrino masses mi in a way that depends on the kinematics of the production process. As
the flavour transition probabilities depend on the composition of the produced neutrino state,
neutrino production and propagation processes will not be independent in this case. If condition
(b) is not met, the probabilities of flavour transformations will depend on the degree of coherence
violation at neutrino production and/or detection, so that there will again be no independence
of neutrino production, propagation and detection.

If we compare conditions (a) and (b) for the universal oscillation probability to exist with the
discussed earlier conditions for neutrino oscillations in vacuum to be described by the standard
oscillation probability, we will find that they exactly coincide. This is an important point:
whenever the universal (production– and detection–independent) oscillation probability makes
sense at all, it is given by the standard oscillation formula (6).

What happens if the coherence conditions are partially or completely violated? In this case
one can in principle introduce an effective oscillation probability by defining it as the probability
of the overall process Γαβ(L,E) divided by the flux of the produced neutrinos jα(E), detection
cross section σβ(E) and the geometric factor of neutrino flux suppression with distance. Such an
effective oscillation probability will obviously be non-universal. It can be shown that, if condition
(a) above is satisfied and in addition either neutrino production or detection is coherent, the
so defined effective oscillation probability will be correctly normalized. An example of such a
production– and detection–dependent effective oscillation probability is given by Eq. (41).

More detailed discussion of the conditions for the existence of the universal and/or correctly
normalized oscillation probability can be found in Ref. 20.

i Note that this procedure will automatically lead to the correctly normalized oscillation probability because
it rids the transition probability of the details of the neutrino production and detection processes.



8 Small Corrections?

We know that the standard formula for the oscillation probability (6) is correct and works well in
most cases of practical interest, provided that matter effects on neutrino oscillations are absent
or can be neglected. However, it is obviously not exact, and so one may be tempted to look
for (presumably) small corrections to it. For example, one might look for the corrections to the
standard oscillation phase due to the next terms in the relativistic expansion of neutrino energy
(p2

i + m2
i )

1/2 ≈ pi + m2
i /(2pi) + ... . The next-to-leading order contribution to the oscillation

phase φosc will then be proportional to ∆m4. At first sight, this may make sense. However, the
correction will only become noticeable at baselines L at which its contribution to the oscillation
phase becomes comparable to 1. It is easy to see that for such distances the leading order term
in the phase is of order E2/m2

ν ≫ 1; this means that the oscillations are already in the complete
averaging regime, and any correction of order one to the oscillation phase are irrelevant.

9 Are Neutrino Oscillations Compatible With Energy-Momentum Conservation?

In quantum theory, the rates of processes are calculated by making use of the generalized Fermi’s
golden rule

Γ =
∏

i

1
(2Ei)

∫ ∏
f

d3pf

(2π)3 2Ef
|Mfi|2(2π)4δ4

(∑
f

pf −
∑

i

pi

)
, (49)

where the factor δ4(
∑

f pf −
∑

i pi) ensures energy-momentum conservation. In particular, it is
used to calculate neutrino production rates and detection cross sections. However, if one applies
it e.g. to neutrino production, one might conclude that the neutrino 4-momentum p = (E, ~p )
can be determined from the 4-momenta of all the other particles participating in the production
process. But then from the on-shell relation E2 = ~p 2+m2 one would be able to find the neutrino
mass, which would mean that the produced neutrino is a mass eigenstate and not a flavour one.
This would imply that neutrinos cannot oscillate. Similar arguments could be made for neutrino
detection.

Thus, a dichotomy arises: On the one hand, energy-momentum conservation is, to the best
of our knowledge, an exact law of nature. On the other hand, applying energy and momentum
conservation to neutrino production or detection would apparently make neutrino oscillations
impossible, in contradiction with experiment.

This caused a significant confusion in the literature. As I discussed above, the resolution of
the paradox comes from the observation that particles participating in neutrino production and
detection processes are localized in space and time, and therefore their energies and momenta
have intrinsic QM uncertainties. Although these uncertainties are usually very small, they
cannot be ignored when neutrino oscillation are considered. In other words, one has to take into
account that the states of these particles are not exact eigenstates of energy and momentum.
This does not mean, of course, that energy and momentum conservation laws are violated.

10 Lorentz Invariance of the Oscillation Probabilities

The probabilities of neutrino flavour transitions must not depend on the Lorentz frame in which
the oscillations are considered, i.e. must be Lorentz invariant. Can we see that this is indeed the
case? In particular, is the standard oscillation probability (6) invariant with respect to Lorentz
transformations?

In addition to its dependence on the neutrino mass squared differences and the parameters
of the leptonic mixing matrix U which are universal constants, the expression in eq. (6) depends
only on the distance L from the neutrino source and the mean momentum of the neutrino state
p through their ratio L/p. Is this quantity Lorentz invariant? It is not difficult to show that it



is, provided that the condition L = vgt is satisfied 21. Note that the relation L = vgt is itself
Lorentz covariant 12; it essentially means that neutrinos are considered as point-like particles.
I criticized the use of this approximation within the plane-wave approach, but it is perfectly
legitimate to employ it in the wave packet framework provided that the length σx of the wave
packet is small compared to the other characteristic lengths inherent to the problem. In the
case of neutrino oscillations it is justified when σx is vanishingly small compared to the neutrino
oscillation length. It can be shown that this requirement is indeed met when the coherent
neutrino production and detection conditions are fulfilled 13. As L/p is Lorentz invariant in this
limit, so is the standard oscillation probability (6).j A more detailed discussion of the Lorentz
invariance of the neutrino oscillation probability in the wave packet approach, including the case
when the coherence conditions are not satisfied, can be found in 12.

11 Do Charged Leptons Oscillate?

The Lagrangian of the charged-current leptonic weak interactions is completely symmetric with
respect to charged leptons and neutrinos, so why do we say that the charged leptons are produced
and absorbed in these interactions as mass eigenstates (e, µ, τ), whereas neutrinos as flavour
eigenstates (5) which are linear superpositions of the mass eigenstates ν1, ν2 and ν3? Why
not the other way around? Or why aren’t both charged leptons and neutrinos produced and
detected as linear superpositions of their respective mass eigenstates? After all, the mixing
matrix U comes from the diagonalization of both neutrino and charged lepton mass matrices,
so it is the leptonic mixing matrix (and not “the neutrino mixing matrix”, as it is sometimes
incorrectly called). A related question is: do charged leptons oscillate?

We know that neutrinos are emitted and detected as coherent linear superpositions of differ-
ent neutrino mass eigenstates only when the coherence conditions for their production, propa-
gation and detection are satisfied, and that all these conditions put upper limits on the neutrino
mass squared differences ∆m2. Similar considerations apply also to charged leptons; the dif-
ference is that their mass squared differences are many orders of magnitude larger than those
of neutrinos. As a result, for the charged leptons the coherence conditions are not satisfied
– these particles are always produced and detected as mass eigenstates and not as coherent
superpositions of the mass eigenstates. This, in particular, means that they do not oscillate 22.

This also tells us that neutrinos produced, e.g., in π → µν and π → eν decays oscillate
even when the corresponding charged leptons are not detected. For neutrino oscillations to
take place, the initially produced neutrino state has to be a flavour eigenstate – a well-defined
coherent superposition of the neutrino mass eigenstates. The absence of coherence of different
charged leptons ensures that in each charged pion decay event either µ or e is produced but
not their linear superposition. This provides a measurement of the flavour of the associated
neutrino, which is necessary for neutrino oscillations to occur 22.

12 A Bit More History

The literature on QM aspects of neutrino oscillations and, in particular, on their wave-packet
description, is vast. I have already mentioned several papers before; I will now discuss them in a
bit more detail and will also give a very brief overview of a few more. More detailed discussions
and further references can be found in 23,24,25.

As mentioned above, neutrino oscillations were first considered in the wave packet approach
by Nussinov 14. He discussed the effects of decoherence by wave packet separation and pointed
out the existence of the coherence length lcoh ≈ σx(vg/|∆vg|). He also estimated the lengths of

jIn the literature it is often stated that the neutrino oscillation probabilities in vacuum depend on L/E.
However, careful derivation in the wave packet framework actually yields the dependence on L/p. While for
relativistic neutrinos L/E is essentially the same as L/p, when considering the Lorentz invariance issues it is
important to remember that L/p is Lorentz invariant (provided that L = vgt holds), whereas L/E is not.



the neutrino wave packets σx and the coherence lengths lcoh for neutrinos produced in decays of
isolated nuclei (σx ≈ c/Γ, where c is the speed of light and Γ is the decay width of the parent
particle), as well as for neutrinos from nuclear beta decay in the interior of the sun. For the
lengths of the wave packets of solar neutrinos he found σx ≈ cτ , where τ is the time of un-
interrupted neutrino emission by the nucleus, which essentially coincides with the time between
collisions significantly changing the phase of the emitter. Assuming ρ ∼ 100 g/cm3 and T ∼
1 keV as the typical density and temperature in the solar core, for solar 7Be neutrinos he found
τ ∼ 3×10−17 s and lcoh ∼ 20 km. In his estimate of the coherence length he used ∆m2 ∼ 1 eV2;
with the currently known value of this quantity he would have obtained lcoh ∼ 3× 105 km.

As discussed in Section 4, Kayser10 considered the coherence conditions for neutrino produc-
tion and detection and related them to the space-time localization of these processes. He also
presented a simplified analytic description of neutrino oscillations in the wave packet picture.

Kobzarev, Martemyanov, Okun and Shchepkin 26 were the first to include neutrino produc-
tion and detection processes in the analysis of neutrino oscillations. They used a simplified
model in which the neutrino source and detected were assumed to be infinitely heavy.

The first complete derivation of the neutrino oscillation probability within the wave packet
approach was given by Giunti, Kim and Lee 18,19. They described neutrinos by Gaussian wave
packets and explicitly demonstrated how the oscillations get suppressed when coherence condi-
tions are violated.

In Ref. 27 Giunti, Kim, Lee and Lee included neutrino production and detection processes
with the source and target particles localized and described by Gaussian wave packets. A similar
approach was independently developed by Rich 28.

Kiers, Nussinov and Weiss 15,16 pointed out that neutrino coherence lost on the way between
the source and detector due to wave packet separation can in principle be recovered at detection.
In Ref.16 they also considered neutrino production, propagation and detection as a single process
in a simple model with localized neutrino source and detector.

Farzan and Smirnov 11 considered neutrino propagation decoherence in momentum space
as the effect of accumulation with distance of fluctuations of the oscillation phase due to the
momentum spread within the wave packet. They also demonstrated Lorentz invariance of the
product σxE and, on a different note, pointed out that the spatial spreading of the neutrino
wave packets does not affect neutrino oscillations.

In Ref. 12 a shape-independent wave packet approach to neutrino oscillation was developed,
the same energy/same momentum confusion was cleared up (see also Dolgov 29 for an earlier
discussion), and Lorentz invariance of the oscillation probability in both coherent and decoherent
cases was demonstrated.

In Ref. 20 the QM wave packet approach to neutrino oscillations was compared with the one
based on quantum field theoretic techniques, the issue of the normalization of the oscillation
probability was clarified and the conditions for the existence of a universal (production– and
detection–independent) oscillation probability were found.

In Ref. 13 the question of whether non-relativistic neutrinos can oscillate and the related
Lorentz invariance issues were addressed.

13 Summary and Discussion

Being a quantum-mechanical interference phenomenon, neutrino oscillations owe their very exis-
tence to the QM uncertainty relations. It is the energy and momentum uncertainties of neutrinos
related to the space-time localization of their production and detection processes that allow the
neutrinos to be emitted and absorbed as coherent superpositions of the states of well defined and
different mass. Energy and momentum uncertainties also determine the lengths of the neutrino
wave packets and are therefore crucial to the issue of the loss of coherence due to the wave
packet separation. Since coherence is essential for neutrino oscillations, and particles states



with intrinsic energy and momentum uncertainties are described by wave packets, a consistent
derivation of the oscillations probability requires using the wave packet formalism.

That being said, it does not mean that each time we want to compute the oscillation prob-
ability for a neutrino experiment we have to resort to a full-scale wave packet calculation. The
tininess of the neutrino mass means that we normally deal only with ultra-relativistic neutrinos
and that in most situations the coherence conditions are satisfied with a large margin. Under
these conditions the probability of flavour transitions in vacuum reduces to the well known stan-
dard oscillation probability (6), which can be safely used most of the time provided that matter
effects on neutrino oscillations are either absent or can be neglected. Coherence conditions,
however, may be violated if relatively heavy predominantly sterile neutrinos exist – in that case
their fulfilment has to be checked on the case-by-case basis.

The standard formula for the probability of neutrino oscillations in vacuum (6) is stubbornly
robust – it is not easy to find a situation in which it does not work or needs significant corrections.
In addition to being perfectly accurate for ultra-relativistic neutrinos in the cases when the
production/detection and propagation coherence conditions are satisfied, it can also be utilized
when coherence is strongly violated – one simply has to replace all the oscillatory terms in Eq. (6)
by their averages. Significant deviations from Eq. (6) can only be expected when violation of
coherence is moderate; if such situations exist at all, they should be quite rare.

The idea of neutrino oscillations was put forward by Pontecorvo over 60 years ago, and more
than 20 years have already passed since their discovery. The theory of neutrino oscillations
has been actively advanced since the 1960s and is quite mature and developed now. Consis-
tent application of quantum theory allowed us to resolve numerous subtle issues and apparent
paradoxes of the oscillation theory. In spite of this, attempts at revising some of its basic in-
gredients do not cease even now, usually for no good reason. Also, oversimplified approaches to
the derivation of the oscillation probability can still be often found in modern reviews, lecture
notes and textbooks. While the use of such simplifications in the pioneering papers is quite
understandablek, using them in contemporary literature can hardly be justified.

Though quite mature, the theory of neutrino oscillations is in my opinion far from being
closed. Over the years, many times it had appeared to us to be complete and finished, but each
time this turned out to be wrong. I believe that we are still in the same situation now.
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