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Nonlinear dynamo action, magnetic helicity,
and galactic wind/fountain

Magnetic helicity: y = (A4-B), B=Vx A
(conserved in ideal MHD)

t=0= B~ 0 (weak seed field)

= X’t:O ~ 0= X‘now ~ ()

Introduce large- & small-scale magnetic fields
B=B+b A=A4+a,
and the corresponding helicities:

X=XB+X», XB=A-B, xp=a-b



A mechanical analogy of helicity conservation:
twist & writhe of a hose pipe

Twist by 90° Twist by 180°



X:XB+Xb7 XB:g'éa Xb:C_ib

e xp=(A-B)~—-LB,By~ *LB?,
for B,/By, = —sinp, p=15° L > 1kpc.

® Xp — < > _ldb2 )

lg < [ ~100pc (g = scale of xp, I = turbulent scale)
B? 4l .
ex=xBtxe=0 = b—QZTZOA,lfld:l
: : B2 1 . ld —1
Catastrophic a-quenching: 75 = R~ <1 if 7= R

(R, =magnetic Reynolds number)




Galactic discs are not closed systems:
galactic winds and fountains
=  the “unwanted” magnetic helicity
can be removed from the disc



Hot
coronal
gas

The multi-layered interstellar
medium (ISM)

Warmer components of the ISM
expand further away from the
Galactic midplane: the 10% K gas layer
is surrounded by a 10° K halo.

Galactic fountain:
Hot gas rises to the halo, cools, and
returns to the discin = 10° yr

Galactic wind in star-forming
galaxies: hot gas escapes to the
intergalactic space
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Galactic fountain/wind removes magnetic field from the disc

Hot gas outflow through the disc surface: V, = 150-200 km/s
Surface filling factor of the hot gas: f, = 0.2-0.3

Relative density of the hot gas: 20_h> — 1072 —-103
0

Effective (mass-averaged) advection speed:

U, ~ .22 v, ~0.1 - 2km/s
(p)



Helicity balance (Shukurov et al. AGA 448, 133, 2006)

Random field & has finite correlation length = define volume density of linkages of b:

Y~ H, forV.a=0 (Subramanian & Brandenburg , ApJLett, 2006)

Evolution equation:
Ix

ot
j=Vxb J=V xB, electriccurrentdensities

+V.-F=-26.B-—2yj-b

>,
£~ aB — 3V x B, mean electromotive force
F = U, advective flux.
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dt = ij‘l:' [ Bz -+ Rm} — T . (L}Illb)

+ mean-field dynamo equations for B, and B,




Mean-field dynamo: 5 = V x (Ux B+aB— 8V x B).
. 0 0 .
Thin disc |z| - h, — > —, axial symmetry, 0/0¢ = 0,
0z = Or’

U = (0,7Q(r),U,), dimensionless equations:
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Sur, Shukurov & Subramanian (2007): Magnetic field evolution in a
galactic disc with helicity advection by the galactic fountain/wind,
“no-z” approximation: 0/0 z — 1/h, 8%/0 72— —1/h?
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Steady-state large-scale magnetic field (Sur et al., MNRAS 2007)
due to helicity advection:

2 D C
B? = 4mpv* - —1 — ) ~ (1uG)?
e C (Dcrit ) (RU " Rm) ( MG) ,

Ry = U,h/ntun, turbulent Reynolds number of the outflow, U, = F(SFR),
C = 2(h/1)* ~ 50,
D = R,R, ~ —(Qh/v)? ~ —10, the dynamo number near the Sun,

Dt = —8, critical dynamo number

Allowing for the anisotropy of interstellar turbulence (Vishniac & Cho 2001)

further enhances the magnetic field, B ~ \/477,0?)2 ~ 5 uG

Dependence of B on SFR, disc-halo connection, winds, galactic evolution, etc.



Magnetic pitch angle: tanp = N
¢

Galactic magnetic field affected by the
outflow: magnetic pitch angle
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Nonlinear, steady state: 0/0t =0,
a-effect suppressed to its marginal level, D(ax + o) = D,
no-z approximation:

2 D w2
0=—-——R,—Bys— | R, + — | B,,
T D, ¢ ( + 4)

7.(.2
0= R,B, — (Ru+Z>B¢.




Mean-field dynamo models for M31, axial symmetry, 6/0r retained,
magnetic pitch angle:
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Mean-field dynamo model for M31, disc outflow included,

axial symmetry, no-z approximation, 6/0r retained
(Smith, Fletcher & Shukurov, in preparation)
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Pitch Angle, Degrees
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Conclusions

JGalactic dynamos need galactic-scale outflows to
produce significant large-scale magnetic fields.

JFountains & winds relieve the magnetic helicity
constraints for the mean-field dynamo and

Jproduce magnetic pitch angles comparable to
those observed.



