Galactic dynamos need galactic outflows to survive

Anvar Shukurov School of Mathematics & Statistics

Outline

Nonlinear dynamo action, magnetic helicity and galactic wind/fountain

Galactic magnetic field affected by the outflow: magnetic pitch angle

Nonlinear dynamo action, magnetic helicity, and galactic wind/fountain

Magnetic helicity: $\chi = \langle \vec{\mathcal{A}} \cdot \vec{\mathcal{B}} \rangle, \quad \vec{\mathcal{B}} = \nabla \times \vec{\mathcal{A}}$

(conserved in ideal MHD)

$$t = 0 \Rightarrow \vec{\mathcal{B}} \approx 0$$
 (weak seed field)
 $\Rightarrow \chi|_{t=0} \approx 0 \Rightarrow \chi|_{now} \approx 0$

Introduce large- & small-scale magnetic fields

$$\vec{\mathcal{B}} = \vec{B} + \vec{b}, \quad \vec{\mathcal{A}} = \vec{A} + \vec{a},$$

and the corresponding helicities:

$$\chi = \chi_B + \chi_b, \quad \chi_B = \vec{A} \cdot \vec{B}, \quad \chi_b = \vec{a} \cdot \vec{b}$$

A mechanical analogy of helicity conservation: twist & writhe of a hose pipe

Twist by 90°

Twist by 180°

$$\chi = \chi_B + \chi_b, \quad \chi_B = \vec{A} \cdot \vec{B}, \quad \chi_b = \vec{a} \cdot \vec{b}$$
• $\chi_B = \langle \vec{A} \cdot \vec{B} \rangle \simeq -LB_r B_\phi \simeq \frac{1}{4} LB^2,$
for $B_r/B_\phi = -\sin p, \quad p = 15^\circ; \quad L \gtrsim 1 \text{ kpc.}$
• $\chi_b = \langle \vec{a} \cdot \vec{b} \rangle \simeq -l_d b^2,$
 $l_d \lesssim l \simeq 100 \text{ pc} \qquad (l_d = \text{ scale of } \chi_b, l = \text{ turbulent scale})$
• $\chi = \chi_B + \chi_b = 0 \quad \Rightarrow \quad \frac{B^2}{b^2} \simeq \frac{4l_d}{L} \simeq 0.4, \text{ if } l_d \simeq l$
Catastrophic α -quenching: $\frac{B^2}{b^2} \simeq R_m^{-1} \ll 1 \quad \text{if} \quad \frac{l_d}{L} \simeq R_m^{-2}$
 $(R_m = \text{magnetic Reynolds number})$

Galactic discs are not closed systems: galactic winds and fountains

> ⇒ the "unwanted" magnetic helicity can be removed from the disc

The multi-layered interstellar medium (ISM)

Warmer components of the ISM expand further away from the Galactic midplane: the 10⁴ K gas layer is surrounded by a 10⁶ K halo.

Galactic fountain:

Hot gas rises to the halo, cools, and returns to the disc in $\cong 10^9$ yr

Galactic wind in star-forming galaxies: hot gas escapes to the intergalactic space

HI shell : hot gas breaking through the gas layer into the halo

Numerical simulation of a supernova exploding in a stratified gas layer (M.-M. Mac Low)

Galactic fountain/wind removes magnetic field from the disc

Hot gas outflow through the disc surface: $V_z = 150-200$ km/s

Surface filling factor of the hot gas: $f_s = 0.2-0.3$

Relative density of the hot gas: $\frac{\rho_h}{\langle \rho \rangle} = 10^{-2} - 10^{-3}$

Effective (mass-averaged) advection speed:

$$U_z \simeq f_{\rm s} \frac{\rho_h}{\langle \rho \rangle} V_z \simeq 0.1 - 2 \,{\rm km/s}$$

Helicity balance

Random field \vec{b} has finite correlation length \Rightarrow define volume density of linkages of \vec{b} : (Subramanian & Brandenburg, ApJLett, 2006) $\chi \approx H_b$ for $\nabla \cdot \vec{a} = 0$

Evolution equation:

$$\frac{\partial \chi}{\partial t} + \nabla \cdot \vec{F} = -2\vec{\mathcal{E}} \cdot \vec{B} - 2\eta \overline{\vec{j} \cdot \vec{b}}$$

 $\vec{j} = \nabla \times \vec{b}, \quad \vec{J} = \nabla \times \vec{B}, \quad \text{electric current densities}$ $\vec{\mathcal{E}} \approx \alpha \vec{B} - \beta \nabla \times \vec{B}$, mean electromotive force $\vec{F} = \chi \vec{U}$, advective flux.

 $\alpha = \alpha_{\text{kinetic}} + \alpha_{\text{m}},$

$$\alpha_{\rm m} \simeq \frac{1}{3} \tau k_0^2 \frac{\chi}{\rho}$$

$$\frac{\partial \alpha_{\rm m}}{\partial t} = -2\beta k_0^2 \left(\frac{\vec{\mathcal{E}} \cdot \vec{B}}{B_{\rm eq}^2} + \frac{\alpha_{\rm m}}{R_{\rm m}} \right) - \nabla \cdot \left(\alpha_{\rm m} \vec{U} \right)$$

+ mean-field dynamo equations for B_r and B_{ϕ}

Mean-field dynamo:

$$\frac{\partial B}{\partial t} = \nabla \times (\vec{U} \times \vec{B} + \alpha \vec{B} - \beta \nabla \times \vec{B})$$

Thin disc $|z| \cdot h$, $\frac{\partial}{\partial z} \gg \frac{\partial}{\partial r}$, axial symmetry, $\partial/\partial \phi = 0$, $\vec{U} = (0, r \ (r), U_z)$, dimensionless equations:

$$\begin{aligned} \frac{\partial B_r}{\partial t} &= -\frac{\partial}{\partial z} (R_u \boldsymbol{U}_{\boldsymbol{z}} B_r + R_\alpha \alpha B_\phi) + \frac{\partial^2 B_r}{\partial z^2}, \\ \frac{\partial B_\phi}{\partial t} &= R_\omega B_r - R_u \frac{\partial}{\partial z} (\boldsymbol{U}_{\boldsymbol{z}} B_\phi) + \frac{\partial^2 B_\phi}{\partial z^2}, \\ \frac{\partial \alpha_m}{\partial t} &= -C \left(\alpha B^2 - R_\alpha^{-1} \vec{J} \cdot \vec{B} + \frac{\alpha_m}{R_m} \right) - R_u \frac{\partial}{\partial z} (\boldsymbol{U}_{\boldsymbol{z}} \alpha_m), \end{aligned}$$

$$\begin{aligned} \alpha &= \alpha_K + \alpha_m, \quad \alpha_K \simeq \frac{l^2}{h}, \quad C = 2\frac{h^2}{l^2}, \quad \vec{J} \cdot \vec{B} = B_\phi \frac{\partial B_r}{\partial z} - B_r \frac{\partial B_\phi}{\partial z}, \\ R_\alpha &= \frac{\alpha_0 h}{\beta}, \quad R_\omega = \frac{(r\partial \ /\partial r)_0 h^2}{\beta}, \quad R_u = \frac{U_{z0} h}{\beta}. \end{aligned}$$

Sur, Shukurov & Subramanian (2007): Magnetic field evolution in a galactic disc with helicity advection by the galactic fountain/wind, "no-z" approximation: $\partial/\partial z \rightarrow 1/h$, $\partial^2/\partial z^2 \rightarrow -1/h^2$

Steady-state large-scale magnetic field (Sur et al., MNRAS 2007) due to helicity advection:

$$B^2 \approx 4\pi\rho v^2 \frac{2}{C} \left(\frac{D}{D_{\text{crit}}} - 1\right) \left(R_U + \frac{C}{R_m}\right) \simeq (1\mu\text{G})^2$$
,

 $R_U = U_z h/\eta_{
m turb}$, turbulent Reynolds number of the outflow, $U_z = F({
m SFR})$, $C = 2(h/l)^2 \simeq 50$,

 $D=R_lpha R_\omega\simeq -(-h/v)^2pprox -10$, the dynamo number near the Sun,

 $D_{
m crit} pprox -8$, critical dynamo number

Allowing for the anisotropy of interstellar turbulence (Vishniac & Cho 2001) further enhances the magnetic field, $B\simeq\sqrt{4\pi\rho v^2}\simeq5\,\mu{\rm G}$

Dependence of B on SFR, disc-halo connection, winds, galactic evolution, etc.

Galactic magnetic field affected by the outflow: magnetic pitch angle

Beck et al., ARAA, 1996

Nonlinear, steady state: $\partial/\partial t = 0$,

 α -effect suppressed to its marginal level, $D(\alpha_K + \alpha_m) = D_c$ no-z approximation:

$$0 = -\frac{2}{\pi} R_{\alpha} \frac{D}{D_c} B_{\phi} - \left(R_u + \frac{\pi^2}{4}\right) B_r ,$$

$$0 = R_{\omega} B_r - \left(R_u + \frac{\pi^2}{4}\right) B_{\phi} .$$

$$\frac{B_r}{B_{\phi}} = \frac{R_u + \pi^2/4}{R_{\omega}},$$
$$R_U = 0 \quad \Rightarrow \quad \tan p = \frac{\pi^2}{4R_{\omega}}, \quad p \simeq -10^{\circ}$$

Mean-field dynamo models for M31, axial symmetry, $\partial/\partial r$ retained, magnetic pitch angle:

Shukurov, in: Mathematical Aspects of Natural Dynamos, 2006, astro-ph/0411739

Mean-field dynamo model for M31, disc outflow included, axial symmetry, no-*z* approximation, $\partial/\partial r$ retained

(Smith, Fletcher & Shukurov, in preparation)

Magnetic pitch angle in M31

Conclusions

Galactic dynamos need galactic-scale outflows to produce significant large-scale magnetic fields.

□ Fountains & winds relieve the magnetic helicity constraints for the mean-field dynamo and

produce magnetic pitch angles comparable to those observed.