Extragalactic magnetic fields and extended emission around γ-ray sources

Andrii Neronov

ISDC Data Centre for Astrophysics, Geneva

Magnetic fields and gamma-ray induced cascades in the IGM

Absorption of Very-High-Energy (VHE, $E \sim 0.1-10 \text{ TeV}$) gamma-rays on Extragalactic Background Light (EBL, $E \sim 0.1-10 \text{ eV}$) photons leads to deposition of e^+e^- pairs in the intergalactic medium.

 e^+e^- pairs re-emit gamma-rays via inverse Compton scattering of CMB photons. Electromagnetic cascade develops along the gamma-ray beam.

Secondary cascade emission could be detected by gamma-ray telescopes. Deflections of trajectories of e^+e^- pairs by magnetic fields make the cascade emission signal to appear as

- extended and
- time-delayed

emission around the primary extragalactic gamma-ray source.

Magnetic fields and gamma-ray induced cascades in the IGM

Magnetic fields and gamma-ray induced cascades in the IGM

Spatial structure of the cascade

Spatial structure of the cascade

Spatial structure of the cascade

Detection of extended emission with Fermi

$$\Theta \approx \frac{\delta}{\tau_0} = 0.4^{\circ} \frac{1}{\tau} \left[\frac{B}{10^{-17} \text{G}} \right] \left[\frac{E_{\gamma}}{1 \text{ GeV}} \right]^{-1}$$

Fermi observations of extended emission from the cascade emission are sensitive to magnetic fields in the range $B \ge 10^{-17}$ G

Detection of extended emission with Fermi

Halos around Fermi blazars?

Halos around Fermi blazars?

Halos around fermi blazars?

Verification of the result of Ando & Kusenko (2010) via a direct comparison of photon distribution around AGN with that around Crab pulsar shows that the the result of Ando & Kusenko is wrong.

(note that in the published version of Ando & Kusenko paper, there is a new mistake in the estimate of background level in 3-10 GeV band, where they find a halo when comparing AGN photon distribution with the PSF derived from Crab.)

Uncertainty of Fermi PSF

Fermi "instrument characteristics" files used in standard analysis use a 5-parameter analytical approximation for PSF (values of parameters are tabulated). The approximation is not precise enough for back photons

Uncertainty of Fermi PSF

Fermi "instrument characteristics" files used in standard analysis use a 5-parameter analytical approximation for PSF (values of parameters are tabulated). The approximation is not precise enough for back photons ... and at high energies

Extended halo vs. jet-like emission

Photon distribution around Mrk 501 (left) and Mrk 421 (right) above 300 GeV observed by MAGIC telescope is also consistent with that around Crab.

Additional uncertainty:
$$E_{\gamma} = \varepsilon_{CMB} \frac{E_e^2}{m_e^2} \approx 300 \left[\frac{E_{\gamma 0}}{17 \text{ TeV}} \right]^2 \text{ GeV}$$

Extended halo vs. jet-like emission

Extended halo vs. jet-like emission

Lower bound on magnetic fields in IGM

Fermi upper bound on the cascade flux is inconsistent with assumption of negligible magnetic fields along the line of sight

Gamma-ray data could be used to derive a **lower bound** on magnetic field in the intergalactic medium

Extension of the cascade source is larger than point-spread function of Fermi telescope

Neronov & Vovk '10 Tavecchio et al. '10 Dolag et al. '10

Lower bound on magnetic fields in IGM

Fermi upper bound on the cascade flux is inconsistent with assumption of negligible magnetic fields along the line of sight

Gamma-ray data could be used to derive a **lower bound** on magnetic field in the intergalactic medium

Time delay of the cascade source is larger than assumed source activity period (= several years of gamma-ray observations

Dermer et al. '10 Taylor, Vovk, Neronov '10 (in prep)

Absorption of TeV gamma-rays from distant blazars and subsequent re-emission of gamma-rays from electromagnetic cascade could lead to appearance of extended gamma-ray emission around extragalactic sources.

This emission could be detectable by Fermi is magnetic field is strong enough $(B>10^{-17} \text{ G} \text{ for large correlation length})$

Extended emission could appear either in the form of an extended halo or as a jet-like extension of the source.

Up to now, 0.1-100 GeV extended emission around blazars is not detected

Non-detection of extended emission from most promising candidates imposes a lower bound on the strength of magnetic field in the intergalactic medium at the level of $\sim 10^{-15}$ G if suppression of the cascade emission due to extended nature of the cascade source is assumed.