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Magnetic fields beyond the bounds
of Iindividual galaxies and clusters.
Overview

This talk mostly excludes B within galaxies and within galaxy
clusters

Local universe, filaments, voids, recombination era. (z=0to 2>
1500).

opportunities for next-generation observations
Some guiding theory: modelling: energy, physics

Synergies e.g. with high energy- & astroparticle phyics.



Comments on seed fields

Possibilties:

Primordial B
— i.e. before the epoch of last scattering.

B seeded in baryonic plasmas, post-recombination, in stars/ galaxies/ IGM

Comments:

Possibility 1 difficult to verify — but
Important connections to physics, particle cosmology, and possibly string theory.
Possibilities start at the Planck scale
limportant test: <|B|> in voids
(reviews: e.g. Kronberg 1994, Widrow 2002, Grasso & Rubenstein 2004)

Possibility 2 is certain: Mechanisms experimentally verified
star + SN-driven outflow
Supermassive BH — produced fields
Subsequent regeneration mechanisms.



B in the vicinity of galaxies



Model of the Galactic |B| vs. r.
from all-sky, 0.4 GHz synchrotron emissivity
(Haslam et al.)
supported by y - ray observations
(Strong et al.)

E.M. Berkhuijsen, R, Wielebinski (MPIfR Bonn)



How galactic winds
driven by stellar processes
inject magnetic fields into the IGM

A. "quiescent’, Milky Way — like galaxies
B. Starburst and dwarf galaxies




Outflow to IGM from the M82 starburst galaxy (3 Mpc distant)

VLA, All-config, 6 & 8 GHz, ~0.3”
1 resolution

OQutflow halo:
Bhan - 1OHG

Kronberg, P.P. Biermann, P.L.
Schwab, F.R. ApJ 246, 751, 1981.

Allen & Kronberg, 8GHz
coherence scale

1-2kpc

Reuter, H.-P., et al.. A&A, 282, 724, 1994, [A&A 293, 287, 1995 - Figs. with corrected
orientation].
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NGC 4569 4.85 GHz Total power + Pol. int. B-vectors

1318 | | | |

K. Chyzy, M. Soidla, D.J. Bowmans, B. Vollmer, Ch-Balkowski,
R. Beck, M. Urhanik - z
A&A 347,465, 2006
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Collective dwarf_galaxy seeding

of the IGM
MODEL INPUTS

Outflow halo parameters at low z
Dwarf galaxy counts, merging models
Helrarchical merging scenarios since z ~15
Embed in Hubble flow

RESULTS
Volume of intergalactic filaments at z ~0

is easily filled with magnetic fields at B, ~ 10
before any post-amplification --see below




V, = Ii.g.volume available” to be filled with outflow
VL(t) = volume filled with stellar/SN halo outflow

f(f), [or f(z)] = VIV, fraction of available IGM (i.e. within
galaxy filaments) that gets filled fromz~10toz =0

An analytical model
for early starburst
dwarf galaxy seeding
of the IGM with

magnetic fields

P.P. Kronberg, H. Lesch,
and U. Hopp, ApJ, 511, 56-
64, 1999
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Figure from:
P. Kronberg, H. Lesch & U.
Hopp ApJ, 511, 56-64, 1999

A starting

template for
full simulations



Subsequent B - amplification of
early galactic wind fields”?

Subsequently amplified in vortices of shearing flows
in gf_SS formation?

« upto~ 107G in LSS filaments?
D. Ryu, H. Kang, & P. L. Biermann, A&A, 335, 19, 1998,

H. Kang, S. Das, D. Ryu, J. Cho, ICRC 2007,
D. Ryu, Kang, H, Cho, J., Das, S. Science, 320, 909 2008:



H. Kang, S. Das, D. Ryu, J. Cho
ICRC 2007 Proceedings, and

Science, 2008

earlier work: Ryu, Kang & Biermann ApJ 1998

Figure 1D {a) Wolume fraction in the gas density-EC ME stenpth plane with ouwr model BOGME ot 2 = 00 (b
Yolume fraction, F faloel 81, {solid lined and it cuomulativae digribution, - 80, {dotied) as a functicon
of BOME strenpgih.




Central galactic black holes as a
source of IGM magnetic energy

Energetics
Global consequences for IGM fields

Connections to fundamental plasma processes



IGM magnetic energy supplied by central galactic
black holes

Can be globally quantified

A global, observation-based calculation:

hrwnge,

ensity

(Mgy,>105M ) < Po, 22x10°M o Mpc®
Gravitational energy M

reservoir per BH M - C2 —1.8 ><1062 BH ergs

(scaled for infall to Ry)

10°M_



This leads to an average magnetic energy density, €g
supplied to the IGM
from supermassive black holes .

if no B-dissipation over ~ a Hubble time

Smoothed out SMBH magnetic energy reservoir

VoL E
&, =1.36x107" o | [ Tr X T ravents X I\QBH ergcm”
01\ o1 0.1 10°M_

Gives BEH — 872'88 =1.8X1O_7 G

e Initially captured within galaxy filaments
Conclusion:

IGM near galaxies should contain magnetic energy = &

Next:

Observational tests for &g, in the IGM




Two recent probes for magnetic fields in local
cosmological LSS, beyond galaxy clusters

First Faraday RM probe for <|B|> in local universe LSS

filaments of galaxies defined from (1) CfA2 and (2) 2MASS
SUREVE

Xu, Kronberg, Habib & Dufton ApJ 637, 19, 2006

2. Search for unprecedented, faint, synchrotron radiation

combining the 305m Arecibo telescope and the 1000m
DRAQO interferometer. Capable of ~ 0.1 uG — level B gy,
detection.

Kronberg, Kothes, Salter, Perillat ApJ 659, 267, 2007



New smoothed Galactic RM sky from 2250 egrs RM’s
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Kronberg & Newton-McGee 2009



Probe No.1

RM search for magnetized plasma beyond clusters
Xu, Kronberg, Habib, Dufton: ApJ 2006, 637, 19

SMOOTHED
FARADAY
ROTATION

— Perseus-Pisces
supercluster

T rad/m?

GALAXY COLUMN
DENSITY

(Method #2:
2MASS, HEALPIXx)

galaxies

< per pixel

(cc column density)




for the Perseus-Pisces supercluster chain
Two types of investigation

Xuetal. ApJ 2006

Weighted path length vs RM
from 3-D Voronoi-tessilated IGM filament volumes
(".- 3-D spectroscopic z’s are measured).

also from 7°-smoothed data

Galaxy column density vs RM
from 7°-smoothed data

(used the 2ZMASS galaxy survey)
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Result (Xu et al. ApJ 637, 19, 2006)

Attempted 3 local superclusters Virgo,
Hercules, Perseus-Pisces. 2 independent
galaxy survey analyses + RM’s

CfAZ2 survey -spectroscopic z’s — 3D

2MASS survey spectral z’s — column
densities

Tentative result for B In Perst

supercl

us-Pisces

uster filament zones.

~ 10°'G using both CfA2 and 2MASS



Probe No. 2

B,su from diffuse
synchrotron radiation detection

A novel combination of :
The Arecibo radio telescope

(1argest single radio reflector)
with
The DRAO interferometer

(Wide-angle, precision-imaging interferometer)




Astrophysical aims of Arecibo-
DRAO radio images

‘ Detect weak magnetic fields in intergalactic space via diffuse synchrotron
emission (at < 1GHz)

. Search possible radio foregrounds to the cosmic microwave background
(CMB) on the scale of arcminutes (multipole scales, |, up to ~ 3000)

‘ Test for energy exchange from central black holes of galaxies to the
iIntergalactic medium

: Can we detect a radio counterpart to the “Warm-hot intergalactic medium”
(seen in soft X-rays)?

’ Explore connections between the radio, and the X- and gamma-ray
Universe)
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2 min rms optics
illuminated area =200m
uv overlap with-DRAO =200m




Dominion Radio Astrophysical Observatory
Penticton BC, Canada

Min. projected separation = 18m

In 12 days, 1 full image within 9° circle at 408 MHz
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8° dia. Arecibo + DRAO
image, at a resolution of
2.5 x6.5 0.4 GHz

2.7K CMB background and
galactic foregrounds (» 18K)
are included



COMBINED Arecibo-DRAO image,

now smoothed to 10’ (Arecibo) resolution
P. Kronberg, R. Kothes, C. Salter, & P. Perillat ApJ 659, 267, 2007

*Discrete sources removed,

*CMB + linear plane Milky Way
foreground removed

«Strongest discrete sources
re-overlaid (yellow ellipses)

» Black contours at 1.4, 1.9, 2.4,
2.9 34, 3.9 4.4, 10, 40K
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e 0 = 250mK at 430 MHz

Region A (2 - 3 Mpc in extent)
requires a distributed “fresh”
energy source — plausibly
provided by the ~ 7 embedded,
radio galaxies.
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Summary of signal detection

In the hole_ zones, we have reac_hed _th_e
absolute discrete source confusion limit.

“diffuse” emission > 400 mK is detected at
many locations over the 70 sq deg field

This is composed of:

Diffuse intergalactic emission (e.g. Regions A
and B)

Galactic foreground (+ other extragalactic?),
previously undetected on arcmin scales

Blends of faint discrete sources




Energetics of intergalactic fields
deriving from central BH's



Adapted from Kronberg, Dufton, Li, and Colgate, ApJ 560:178 (2001)

10° Mg black hole infall energy = 10%2 ergs

l R > Rs

Giants -

(>0.67 Mpc) Mind the gap!!

=MgC?

'» Accumulated energy
(B2/81T + £-5) X (volume)
PdV work of | from ““mature” BH-powered

largest cluster radio source lobes
bubbles in CDJ |

model (Diehl et al.

GRG’s

capture the highest fraction
Giithin 150 kpe) of the magnetic energy
released to the IGM

B CEEE  Kronberg, Dufton, Li, &
Largest linear size (Mpc)
Colgate,
Apd 560, 178, 2001

Cluster




A. G. Willis and R. G. Strom: Multifrequency Observations of 3C 326 Exam ple Of d
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Fig. 8. The distribution of rotation measure over 3C 326 as computed from the 49 cm and 21 cm convolved data superposed upo
photograph™ of the 49 cm total intensity. Note that to produce a simple grid of single digit numbers we have subtracted integratec

measures, whose derivation is described in the text, of +25rad m~2 and +20 rad m~2 from the values measured at individual sample
the east and west components respective or reference, these integrated values are displayed under each componen



distributed particle acceleration
on 100kpc-Mpc scales

.
A.H. Bridle et al. NRAO
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General properties of
BH — fed radio lobes

Thermal gas density is < that of ambient IGM
Easy to demonstrate within clusters,

Appears also true of large radio lobes outside of
clusters.

Nicely demonstrated in WSRT GRG images of
Strom & Willis 3C326, 3C236 A&A 1978, 1980,

and others since

at 1GHz > f > 150 MHz




Evidence for dominance of
magnetic structures in lobes and
jets

 simulation of jet-lobe transition points in clusters

* Jet/lobe systems as UHECR acceleration sites?

o cluster environment provide a "~ controlled’” probe
of lobe physics



Magnetic tower jet/lobe in a cluster

environment
M. Nakamura, I.A. Tregillis, H. LI, S. Li ApJ 686 843, 2008
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Fis. 2.— Axial profiles of physical guantities along the z-axis at 1 = 3.0(r =
72 Myr): density o, sound speed O, and the axial velocity component ¥, The po-
sitions of the expanding shock and lobe fronts are shown.
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A recent galaxy cluster-environment test for
the
for the relative dominance of magnetic

BH/jet — energized lobes

Diehl, S,, Li, H, Fryer, C, Rafferty, D ApJ 2008



The Nature of X-ray Cavities 13
ES.DlehI, H. L1, C.Fryer, D. Rafferty 2008 ApJ

. oot of TWE

- Hydra v
- Cluster o <u—

Hydra cluster X-ray ima

kpe
[ ]
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D
F

Wise, M.W., McNamara, B.R., Nulsen, I |
P.E.J, Houck, J.C., & David, L.P. ApJ L0 A .
659, 1153, 2007 /1,

Adiabatically expanding
hydrodynamic models

Fia. 6. Left: The multi-cavity system in Hydra A, reproduced from Wise et al. (2007) with permission from the anthors. The black
area is excess X-ray emission left-over after an elliptical surface brightness model has been subtracted. Right: Data Points: Bubble sizes for
Hydra A as a function of distance to the center, taken from Wise et al. (2007); Lines show predictions from the ADG3 (triple-dot dashed
line), AD43 (dotted line), FML (also dotted line), CIH {dashed line), as well as the CI. model (solid line). The cavity labels are the same
in both plots.

E limits to the true location of the bubbles. This will not
only affect the radii themselves, but also the point at
which other quantities are evaluated at, like density, tem-

:Perseus CIUSte ] perature and pressure. In general the temperature rises
J. Sanders & A.C. Fabian ’ i outward in these systems, thus the temperature at the

L location of the bubhble is likely to be syvstematically un-
MNRAS 381, 1381, 2007 i derestimated. The density and ambient pressure on the
other hand will always be overestimated. This also means
that any rise times derived from using the projected ra-

- L - dius rather than the true distance to the center will result = =
I ® in estimates for the rise times that are systematically too EffeCtS Of SIg/NOISe and
= - — - R
E P ] low. We also note that the smaller the ohserved radins
. - is, the higher the probability that it is due to an effect 1 ‘t- ff t -
r g T caused by projection. prOJeC Ion e eC S1
But there are more subtle effects that projection has on - -
our data. As we do not have an automated tool to detect EnBI IN & Helnz

T L and identifving these systems. This task is much more A&A 384 L27 2002

L L 10 difficult, if the cavities overlap with the bright cluster ) )

buhhbles, one has to rely on human experience in finding
center or the bubble on the opposite side of the cluster.

F

Iy

171 - - -
In fact, our sample does not contain any cavity system in
which the bubble size exceeds the projected distance to
. . ) . the center, the slope of which 1s shown by the black solid
F13. 7.— Bubble sizes for Perseus as a function of distance to the line in Ficure %. eve I +h this is statistically very
center. Lines as in Figure 6. The red data point shows the upper _111( m 1EUTE Sy € ven though this 1s stat }‘“r Ic a ¥ Very
limit for the new bubble size estimate, the green data shows a lower improbable. This suggests that our sample is affected hy
linit. The correct answer will likely lie somewhere in between these what we will refer to as a “geometric” selection effect,

two extremes. introduced by our manual detection process.




Kpc jets as potential sites for
UHECR acceleration

* The 3C303 jet



3C303 4866 MHz
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Plasma Diagnostics of the 3C303 jet
_apenta & Kronberg ApJ 625, 37-50, 2005

(1) <(Energy flow rate)> @r = 2.8x1043 17'@

(2) Total radio — X-ray luminosity of the jet= 1.7 x 1042 erg s-'

(3) Measure knots’ synchrotron luminosity & size (D, ) — =57 =100

(4) From the Faraday rotation images of the knots (RM oc n,,, x B 79t x D, )

— n,, in knots (upper limit for 3C303) -— n,, < 1.4x10° cm*




For knot “C”, the RM image of 3C303 enables a
measurement of the tranSverse VRM (radians/m-2/m)

over a knot. i.e. VRM is perpendicular to jet!

B (RM) reverses sign on the jet axis. |B| is estimated
from measured synchrotron emissivity ( 2 1mG)

a galaxy-scale, current-carrying “wire”

result for 3C303: (BG;) [r=0.5kpc]

Is directed AWAY from the galaxy AGN nucleus in this
knot

Intrinsic knot polarization consistent with low-¢ jet
helical field

H. Ji, P.P. Kronberg, S.C. Prager, D. Uzdensky,
Physics of Plasmas 15, 058302-8, 2008




Background RM probes of magnetic fields
In galaxy systems to high z (< 6)

Spectral resolution must be high enough to estimate W,,. Need 8+ meter

optical telescopes to explore spectra to large z! These now exist!

Strong magnetic fields have been detected out to z 2>

3.5! Slow (10%r) galactic dynamos are not the
explanation of |B| amplification in galaxy systems.

No detections yet with current instruments



Faraday rotation at a distant EGRS, and at an intervenor

ol -l host galaxy
B 2.\, system
5 at z,
( - Clustx : .
galaxies Intervening
galaxy

system at z_

telescope

- AZ B 525 5 rad
RM =2 =8.12x10 !(1+z) n.(2)B (z)dI(z) 7

, N, in cm3,



New smoothed Galactic RM sky from 2250 egrs RM’s
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Kronberg & Newton-McGee ArXiv 0909.4753 2009



Detections of magnetized optical absorption line systems

P.P.Kronberg & J.J. Perry,
ApJ 263, 518, 1982
(37 RM + Abs. spectrum QSQO’s)

b,

~70-60~-50 <40 -30 -20 -10 O 10 20 30 40 50 60 70

rad/m?

Ha)
Qs0's WITH WEAK OR
NO ABSORPTION LINES (21)

2ib) -70-60-50 40 -30-20-10 0 10 20 30 40 50 &0 7O

QS0's WITH RICH rad/m?
ABSORPTION LINES (14)

300
RRM(rad /m?)

G.L. Welter, J.J. Perry, & P.P. Kronberg
ApJ 279, 19, 1984

119 RM sample, 40 had spectra with
strong optical absorption lines

1505 with rch absorphon lines
I'=1,

mBm m HE

1505 with rich absorphion nes

il
[
L3
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L
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200 GO0 _ 504
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Effect of Mgll absorption (AA2796.35, 2803.53 A) on
the RM’s of quasars

2.0>z>0.6 m,<19, and |b| > 30°
M.L. Bernet, F. Miniati, S.J. Lilly, P.P. Kronberg, M. Dessauges-Zavadsky

Nature 454, 302-4, 2008 Jul18

From new VLT
observations

in 2006-7.

UVES spectrograph

1 or 2 Mgll systems

., W

2 systems




Cumulative plots of RM for 3 different Mgll absorption line
groups
M.L. Bernet, F. Miniati, S.J. Lilly, P.P. Kronberg, M. Dessauges-
Zavadsky Nature 454, 302-4, 2008

Method: G.L. Welter, J.J. Perry & P.P. Kronberg ApJ 279, 19, 1984
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2-D magnetic probes of intervenors
at high z

* High-z jets make promising probes of
intervening galaxy systems.

« 2 systems described below
(1) — an intervening spiral-like galaxy (z =
0.38) in front of a z = 1 quasar jet

(2) -- an "associated” absorbing gas cloud
atz_,. ® Z . esion TOr 3C191 (z ~ 1.9)

 Future: 3-D using RM synthesis
techniques



PKS 1229-021 a jet quasar at z = 1.03 behind a
spiral galaxy atz=0.4

Kronberg, Perry & Zukowski ApJ 387, 528-535, 1992




3C191 a quasar jet (z = 1.95) with an
“"associated” intervenor with rich absorption lines

P.P Kronberg,
J.J.Perry &
E.L.H. Zukowski

ApJL 355, L31, 1990 RM

measured

=
=
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5GHz and 15
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Principle conclusion from
both analyses of (1) all sources,
and (2) Mgll absorbers

* Magnetic field strengths in galaxy systems
(N, = 10%° cm2) up to = 80% of a Hubble
time ago are at least comparable to those
at z=0.

* J.e. confirms lack of evidence for a slow
galactic dynamo field amplification over
cosmic time




Can we detect |B| = 0 before the epoch
of recombination?

Currently, few possibilities to detect B at 7< Txecoums-

Best(?) one: look for a Faraday RM signal in the polarized CMB over the a
appropriate range of multipole scales (). (Kosowsky & Loeb ApJ 469, 1 1996)

RM = Ay/(A4)? (radians/m?) = kheB dl
*Ay must be a detectable angle rotation

eLongest 1 in AA range must be short enough to be free of all
polarized foregrounds at z < 1000

*Need to evolve n, profile as scattering ¢ increases through the recombination
redshift.
(W. Hu, D. Scott, N. Sugiyama & M. White, Phys Rev. D 52, 5498, 1995)



lllustrative result

2
B 30GHz
Ay, W2 -171(1-4 0
Bl 7 V,’ 10°G V,

Kosowsky & Loeb ApJ 469, 1 1996
i.e. 1.1° rotation at 30 GHz (1 1cm) == RM 195 rad m2atz=0

v must be high enough to be beyond all foreground polarized rad’n
(e.g. synchrotron, polarized dust, etc. at any z < 1000)
v must be low enough to detect rotation
v,~ 30 GHz is ~ the only possible window, and even there Ay is only ~ 1°

A direct, but difficult measurement. May be possible in future



How to detect
Magnetic fields in cosmic voids?

Diffusion out of the walls and filaments?

Relic of a pre-galactic field?

(these two need to be independently verified)
Propagation of both high energy particles & photons

Time of arrival, deflection, energy and composition



Energy dependent cascade of a broadband y-ray
burst might probe a very weak IGM field

High energy hv - e*e™ cascades in the intergalactic medium

e

Pair Inverse Background
Production {fumptuL/\/- photon
'. )

+
rL:-::v,l e

photon

\/X/bl,\ %l}elayed
Infrared \’%

O MW AW AW ;>
h = 0.1 TeV
Ohserver

nucleonty-ray
event '
High field region
(= 10G)




10° 102 10° 10" 10° 10" 12 100 1wt 10®
arrival energy E_ W time delay t,., yr

Stanev T., Engel, R., Mlcke, A., Protheroe, R. J., Rachen, J. Phys Rev. D, 62, 0930052000

(left)

The received CR energy distribution on Earth for a monoenergetically injected proton
energy of 1021-5 eV for a randomly orientated

B,; = 109G at progessively larger distances, up to 512 Mpc. The energy is reduced by
the GZK effect (most severe), B-H pair production losses, and adiabatic losses.

(right)

The relative time delay for protons injected at the same distance, when propagated
through a randomly oriented magnetic field of 10-° G, where I, = 1Mpc.




Limitations in current observational
diagnostics = opportunities!

Need better resolution and frequency coverage for AGN jet and lobe
RM images — for synergy w. simulations

Deeper X-ray observations of jets (< 17 res.)

X-ray and EUV observations in the IGM
y- ray obervations
Milky Way foregrounds in more deep synchrotron surveys

More discrete source Faraday rotation observations needed



End

P.P. Kronberg
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