Gamma-ray cascades in the intergalactic space

Michael Kachelrieß

NTNU, Trondheim

コト ・ 「 一 P ト ・ 王 ト ・ 毛opyright 長 yadim Makaro

Mean free path of photons

Michael Kachelrieß (NTNU, Trondheim)

• UHECRs:

- Photon and neutrino production relatively tight connected:
 - ★ protons:

$$p + \gamma_{3K} \rightarrow \begin{cases} p + \pi^0 \rightarrow p + 2\gamma \\ n + \pi^+ \rightarrow p + 2e^{\pm} + 4\nu \end{cases}$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- UHECRs:
 - Photon and neutrino production relatively tight connected:
 - ★ protons:

$$p + \gamma_{3K} \rightarrow \begin{cases} p + \pi^0 \rightarrow p + 2\gamma \\ n + \pi^+ \rightarrow p + 2e^{\pm} + 4\nu \end{cases}$$

★ nuclei: $A + \gamma_{3K} \rightarrow (A - 1) + n \rightarrow (A - 1) + p + e^- + \nu_e$

 \star connection to UHECRs looser

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

- UHECRs:
 - Photon and neutrino production relatively tight connected:
 - ★ protons:

$$p + \gamma_{3K} \to \begin{cases} p + \pi^0 \to p + 2\gamma \\ n + \pi^+ \to p + 2e^{\pm} + 4\nu \end{cases}$$

HE and VHE photons from AGNs

- UHECRs:
 - Photon and neutrino production relatively tight connected:
 - protons:

$$\begin{split} p + \gamma_{3K} \rightarrow \left\{ \begin{array}{l} p + \pi^0 \rightarrow p + 2\gamma \\ n + \pi^+ \rightarrow p + 2e^{\pm} + 4\nu \end{array} \right. \\ \star \ \, \text{nuclei:} \ \, A + \gamma_{3K} \rightarrow (A-1) + n \rightarrow (A-1) + p + e^- + \nu_e \end{split}$$

HE and VHE photons from AGNs

3

一日、

Diffuse cascade flux:

• analytical estimate:

[Berezinsky, Smirnov '75]

$$J_{\gamma}(E) = \begin{cases} K(E/\varepsilon_{\rm X})^{-3/2} & \text{at} \quad E \leq \varepsilon_{\rm X} \\ K(E/\varepsilon_{\rm X})^{-2} & \text{at} \quad \varepsilon_{\rm X} \leq E \leq \varepsilon_{\rm a} \\ 0 & \text{at} \quad E > \varepsilon_{\rm a} \end{cases}$$

• three regimes:

3

イロト イヨト イヨト イヨト

Diffuse cascade flux:

analytical estimate:

[Berezinsky, Smirnov '75]

$$J_{\gamma}(E) = \begin{cases} K(E/\varepsilon_{\rm X})^{-3/2} & \text{at} \quad E \leq \varepsilon_{\rm X} \\ K(E/\varepsilon_{\rm X})^{-2} & \text{at} \quad \varepsilon_{\rm X} \leq E \leq \varepsilon_{\rm a} \\ 0 & \text{at} \quad E > \varepsilon_{\rm a} \end{cases}$$

- three regimes:
 - Thomson cooling:

$$E_{\gamma} = \frac{4}{3} \frac{\varepsilon_{\rm bb} E_e^2}{m_e^2} \approx 100 \; {\rm MeV} \; \left(\frac{E_e}{1 {\rm TeV}}\right)^2 \label{eq:electropy}$$

- plateau region
- ► above pair-creation treshold s_{min} = 4E_γε_{bb} = 4m_e²: flux exponentially suppressed

3

Diffuse flux, analytical estimate for low-energy part:

• $q_i(E)$: # particles crossing energy E

イロト イヨト イヨト イヨト

Diffuse flux, analytical estimate for low-energy part:

- $q_i(E)$: # particles crossing energy E
- cooling regime:

no generation of electrons for $\varepsilon < \varepsilon_a/2$: $q_e(E_e) = q_0$

$$E_{\gamma} \propto E_e^2 \Rightarrow dE_{\gamma} \propto E_e dE_e$$

Diffuse flux, analytical estimate for low-energy part:

- $q_i(E)$: # particles crossing energy E
- cooling regime:

no generation of electrons for $\varepsilon < \varepsilon_a/2$: $q_e(E_e) = q_0$

$$E_{\gamma} \propto E_e^2 \Rightarrow dE_{\gamma} \propto E_e dE_e$$

inserting in energy conservation,

$$E_{\gamma}dn_{\gamma} = q_e(E_e)dE_e\,,$$

gives

$$J(E_{\gamma}) \propto E_{\gamma}^{-3/2}$$

Diffuse flux, analytical estimate for plateau region:

• energy conservation and $N_e/N_{\gamma} = \text{const.}$

$$\Rightarrow q_i(E_i)E_i = \text{const} \Rightarrow q_e(E_e) \propto 1/E_e$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Diffuse flux, analytical estimate for plateau region:

• energy conservation and $N_e/N_{\gamma} = \text{const.}$

$$\Rightarrow q_i(E_i)E_i = \text{const} \Rightarrow q_e(E_e) \propto 1/E_e$$

• IC regime:

$$E_{\gamma} = \frac{4E_e}{3\ln(2E_e\varepsilon_{\rm bb}/m_e^2)}$$

イロト イヨト イヨト

Diffuse flux, analytical estimate for plateau region:

• energy conservation and $N_e/N_{\gamma} = \text{const.}$

$$\Rightarrow q_i(E_i)E_i = \text{const} \Rightarrow q_e(E_e) \propto 1/E_e$$

• IC regime:

$$E_{\gamma} = \frac{4E_e}{3\ln(2E_e\varepsilon_{\rm bb}/m_e^2)}$$

• to log. accuracy

 $J(E_{\gamma}) \propto E_{\gamma}^{-2}$

イロト イヨト イヨト

Monte Carlo vs. analytical estimate: single source

Michael Kachelrieß (NTNU, Trondheim)

 γ -ray cascades

APC Paris, 2010 7 / 23

Monte Carlo vs. analytical estimate: single source

Michael Kachelrieß (NTNU, Trondheim)

 γ -ray cascades

Fermi-LAT vs. UHECR data:

Fermi-LAT vs. UHECR data:

integrating EJ(E) gives bound $\omega_{\rm cas} \leq 6 \cdot 10^{-7} \, {\rm eV/cm}^3$

Problems of analytical estimates:

• "typical energy" $\varepsilon_{\rm bb}$ of CMB/IR photons

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Problems of analytical estimates:

- "typical energy" $\varepsilon_{\rm bb}$ of CMB/IR photons
- \Rightarrow precise estimate of ε_X and ε_a difficult
 - diffuse flux: superpositions of different au(l)

__ ▶ < ∋ ▶

Problems of analytical estimates:

- "typical energy" $\varepsilon_{\rm bb}$ of CMB/IR photons
- \Rightarrow precise estimate of ε_X and ε_a difficult
 - diffuse flux: superpositions of different $\tau(l)$
 - easy and difficult questions:
 - difficult: tail $J(E, \vartheta)$
 - easy: main flux J(E, 0)

A (10) A (10)

• elmag. cascade only below critical electron energy $E_{\rm cr}$ defined by

$$\left(\frac{1}{E}\frac{dE}{dt}\right)_{\rm syn} = \left(\frac{1}{E}\frac{dE}{dt}\right)_{\rm IC}$$

3

• elmag. cascade only below critical electron energy $E_{\rm cr}$ defined by

$$\left(\frac{1}{E}\frac{dE}{dt}\right)_{\rm syn} = \left(\frac{1}{E}\frac{dE}{dt}\right)_{\rm IC}$$

• for $B \sim 1 \,\mathrm{nG}$: $E_{\mathrm{cr}} \sim 2 \times 10^{18} \,\mathrm{eV}$

• elmag. cascade only below critical electron energy $E_{\rm cr}$ defined by

$$\left(\frac{1}{E}\frac{dE}{dt}\right)_{\rm syn} = \left(\frac{1}{E}\frac{dE}{dt}\right)_{\rm IC}$$

• for $B\sim 1\,{\rm nG}:\,E_{\rm cr}\sim 2\times 10^{18}~{\rm eV}$

 \bullet single electron: total cascade energy reduced by factor $E_e^{\rm cr}/E_0$

• elmag. cascade only below critical electron energy $E_{\rm cr}$ defined by

$$\left(\frac{1}{E}\frac{dE}{dt}\right)_{\rm syn} = \left(\frac{1}{E}\frac{dE}{dt}\right)_{\rm IC}$$

- for $B \sim 1 \,\mathrm{nG}$: $E_{\mathrm{cr}} \sim 2 \times 10^{18} \,\mathrm{eV}$
- ullet single electron: total cascade energy reduced by factor $E_e^{\rm cr}/E_0$
- production spectrum $\propto E_e^{-2}$: cascade energy density $\omega_{cas}(E_e)dE_e \propto E_\gamma J_\gamma(E_\gamma)dE_\gamma$, and the ratio

$$\frac{\omega_{\rm cas}^B}{\omega_{\rm cas}} = \frac{\ln(E_{\rm cr}/E_{\rm min})}{\ln(E_{\rm max}/E_{\rm min})}$$

イロト 不得下 イヨト イヨト 二日

 \bullet elmag. cascade only below critical electron energy $E_{
m cr}$ defined by

$$\left(\frac{1}{E}\frac{dE}{dt}\right)_{\rm syn} = \left(\frac{1}{E}\frac{dE}{dt}\right)_{\rm IC}$$

- for $B \sim 1 \, {
 m nG}$: $E_{
 m cr} \sim 2 imes 10^{18} \, {
 m eV}$
- ${ullet}$ single electron: total cascade energy reduced by factor $E_e^{\rm cr}/E_0$
- production spectrum $\propto E_e^{-2}$: cascade energy density $\omega_{\rm cas}(E_e)dE_e \propto E_\gamma J_\gamma(E_\gamma)dE_\gamma$, and the ratio

$$\frac{\omega_{\rm cas}^B}{\omega_{\rm cas}} = \frac{\ln(E_{\rm cr}/E_{\rm min})}{\ln(E_{\rm max}/E_{\rm min})}$$

• for $E_{\rm max} \sim 1 \times 10^{21} \ {\rm eV}$ and $E_{\rm min} \sim 1 \times 10^9 \ {\rm eV}$,

$$\omega_{\rm cas}^B/\omega_{\rm cas} = 0.78$$

• steeper generation spectrum than -2 $\Rightarrow \omega_{cas}^B/\omega_{cas} \rightarrow 1$

• deflection of electrons:

$$\vartheta \sim \frac{l_{\rm cool}}{R_L} \propto E_e^{-2}$$

▲ 伺 ▶ ▲ 三 ▶

• deflection of electrons:

$$\vartheta \sim \frac{l_{\rm cool}}{R_L} \propto E_e^{-2}$$

 $\Rightarrow\,$ flux within angle ϑ reduced by factor E^2

• deflection of electrons:

$$\vartheta \sim \frac{l_{\rm cool}}{R_L} \propto E_e^{-2}$$

- $\Rightarrow\,$ flux within angle ϑ reduced by factor E^2
- \Rightarrow cooling regime: transition from

$$J(E) \propto E^{-1.5} \to E^{0.5} \to E^{-1.5}$$

Influence of EGMF on flux from single source: time

• probability for misalignement $p \propto \vartheta_{\rm obs} \Rightarrow$ most blazars viewed with $\vartheta_{\rm obs} \sim \vartheta_{\rm jet}$

Influence of EGMF on flux from single source: time

- probability for misalignement $p\propto \vartheta_{\rm obs}\Rightarrow$ most blazars viewed with $\vartheta_{\rm obs}\sim \vartheta_{\rm jet}$
- \Rightarrow halos are not symmetric

Influence of EGMF on flux from single source: time

- probability for misalignement $p\propto \vartheta_{\rm obs}\Rightarrow$ most blazars viewed with $\vartheta_{\rm obs}\sim \vartheta_{\rm jet}$
- \Rightarrow halos are not symmetric
- \Rightarrow time-delay is function of ϑ ,

$$T_{
m delay}(artheta) \sim 3 imes 10^6 {
m yr} \left[rac{(artheta_{
m obs}+\Theta_{
m jet})}{5^\circ}
ight] \left[rac{artheta}{5^\circ}
ight]$$

• choose blazar: large z, stationary, low GeV, high multi-TeV emission

[A. Neronov, I. Vovk '10, F. Tavecchio et al. '10]

• choose blazar: large z, stationary, low GeV, high multi-TeV emission

- TeV photons cascade down:
 - small EGMF: fill up GeV range
 - "large" EGMF: deflected outside, isotropized

[A. Neronov, I. Vovk '10, F. Tavecchio et al. '10]

• choose blazar: large z, stationary, low GeV, high multi-TeV emission

- TeV photons cascade down:
 - small EGMF: fill up GeV range
 - "large" EGMF: deflected outside, isotropized
- open questions:
 - influence of EGMF structure?
 - time-dependence for flaring sources?

[A. Neronov, I. Vovk '10, F. Tavecchio et al. '10]

[A. Neronov, I. Vovk '10, F. Tavecchio et al. '10]

• $B\gtrsim 10^{-15}\,\mathrm{G}$

- some dependence on $\vartheta_{\rm jet}$
- no simulation of elmag. cascade with B

[A. Neronov, I. Vovk '10, F. Tavecchio et al. '10]

 $\bullet ~B\gtrsim 10^{-15}\,{\rm G}$

- some dependence on $\vartheta_{\rm jet}$
- $\bullet\,$ no simulation of elmag. cascade with B

Lower limit on EGMF: uniform field

[Dolag et al. '10]

Lower limit on EGMF: uniform field

[Dolag et al. '10]

Michael Kachelrieß (NTNU, Trondheim)

 γ -ray cascades

APC Paris, 2010 17 / 23

• model filaments by a top-hat:

[Dolag et al. '10]

[Dolag et al. '10]

[Dolag et al. '10]

・ ロ ト ・ 留 ト ・ 画 ト ・ 画 ト

3

19 / 23

APC Paris, 2010

00

E/eV)

linear filling factor $\gtrsim 50\%$

- mainly 3-step cascade: $\gamma \rightarrow e^{\pm} \rightarrow \gamma$
- photon mean free path $D_{\gamma}(E) \sim 1000\text{--}50\,\mathrm{Mpc}$
- electron mean free path $D_e(E) \sim$ few kpc

Michael Kachelrieß (NTNU, Trondheim)

[Dolag et al. '10]

3

19 / 23

APC Paris, 2010

linear filling factor $\gtrsim 50\%$

- mainly 3-step cascade: $\gamma \rightarrow e^{\pm} \rightarrow \gamma$
- photon mean free path $D_{\gamma}(E) \sim 1000\text{--}50\,\mathrm{Mpc}$
- electron mean free path $D_e(E) \sim {\rm few\ kpc}$
- $\Rightarrow\,$ electrons are created "everywhere" and feel B only close to interaction point

-/eV)

Michael Kachelrieß (NTNU, Trondheim)

[Dermer et al. '10]

[Dolag et al. '10]

• Dermer et al. replace distributions by "means", e.g. fixed $\lambda_{\gamma\gamma}=100\,{\rm Mpc}$

イロト イポト イヨト イヨト 二日

[Dolag et al. '10]

- Dermer et al. replace distributions by "means", e.g. fixed $\lambda_{\gamma\gamma}=100\,{\rm Mpc}$
- time delays from MC: for $B = 5 \times 10^{-15} \,\text{G}$:

 $\begin{array}{lll} 1\times 10^6 \mbox{ yr } & (0.1\mbox{--}10)\mbox{GeV} \\ 1\times 10^5 \mbox{ yr } & (1\mbox{--}10)\mbox{GeV} \\ 5000 \mbox{ yr } & (10\mbox{--}30)\mbox{ GeV} \end{array}$

[Dolag et al. '10]

- Dermer et al. replace distributions by "means", e.g. fixed $\lambda_{\gamma\gamma}=100\,{\rm Mpc}$
- time delays from MC: for $B = 5 \times 10^{-15} \,\text{G}$:

 $\begin{array}{ll} 1\times 10^6 \mbox{ yr } & (0.1\mbox{--}10)\mbox{GeV} \\ 1\times 10^5 \mbox{ yr } & (1\mbox{--}10)\mbox{GeV} \\ 5000 \mbox{ yr } & (10\mbox{--}30)\mbox{ GeV} \end{array}$

• for $\tau \sim 100 \, {\rm yr}$: lower limit on B weakens only by a factor 10, to $B = \mathcal{O}(10^{-16} \, {\rm G})$

- Fermi non-observation of TeV blazars requires EGMF
- \Rightarrow quantitative conclusions:
 - sure: large filling factor $f \gtrsim 0.5$
 - bound on EGMF: depends on assumed Δt
 - can be improved by more/longer simultanous observations
 - UHECR: probably useless
 - limit \Rightarrow detection: CTA?

Summary

- Fermi non-observation of TeV blazars requires EGMF
- \Rightarrow quantitative conclusions:
 - $\blacktriangleright\,$ sure: large filling factor $f\gtrsim 0.5$
 - bound on EGMF: depends on assumed Δt
 - can be improved by more/longer simultanous observations
 - UHECR: probably useless
 - limit \Rightarrow detection: CTA?

Summary

- Fermi non-observation of TeV blazars requires EGMF
- \Rightarrow quantitative conclusions:
 - $\blacktriangleright\,$ sure: large filling factor $f\gtrsim 0.5$
 - bound on EGMF: depends on assumed Δt
 - can be improved by more/longer simultanous observations
 - UHECR: probably useless
 - limit \Rightarrow detection: CTA?

Summary

- Fermi non-observation of TeV blazars requires EGMF
- \Rightarrow quantitative conclusions:
 - $\blacktriangleright\,$ sure: large filling factor $f\gtrsim 0.5\,$
 - bound on EGMF: depends on assumed Δt
 - can be improved by more/longer simultanous observations
 - UHECR: probably useless
 - limit \Rightarrow detection: CTA?