Magnetic fields in nearby galaxies

Andrew Fletcher, Newcastle University

with Anvar Shukurov, Rainer Beck, Elly Berkhuijsen and many others

Content

- Sources of information.
 - Synchrotron radiation ...
 - ... its polarization ...
 - ... Faraday rotation ...
 - and depolarization.
- Overview of observations.
- Some connection to theory.
- Concentrate on large-scale magnetic fields

Optical Image credit: NASA, ESA, S. Beckwith (STScI), and The Hubble Heritage Team (STScI/AURA)

$$n_{\rm cr}(E) dE = n_0 \left(\frac{E}{E_0}\right)^{-s} dE$$

cosmic ray electrons, $s \approx 2.5 \text{ to } 3$

 $I_{\nu} \propto n_0 B_{\perp}^{(1+s)/2} \nu^{(1-s)/2}$

synchrotron emission

(+ thermal emission)

Extent of disc

Mitra, Fletcher et al. in prep.

Extent of halo

NGC 891

NGC 4631

Krause 2009

Synchrotron polarization

Linear polarization perpendicular to $B_{\rm \perp}$

 $p_0 = \frac{s+1}{1+7/3} \simeq 0.7$

for purely ordered B

$$p = p_0 \frac{\bar{B}^2}{(\bar{B}^2 + b^2)}$$

high p

degree of B order

Burn 1966

low p

Spiral galaxies

IC342 2.8cm Total Int. + B-Vectors (Effelsberg)

Copyright: MPIR Bonn (R.Beck & B.Sherwood)

NGC6946 3cm Total Int. + B-Vectors (VLA+Effelsberg)

Copyright: MPIR Bonn (R.Beck)

Copyright: MPIR Bonn (R.Beck, C.Horellou & N.Neininger)

Flocculent galaxies

M33 6cm Total Int. + B-Vectors (Effelsberg)

Copyright: MPIfR Bonn (R.Beck & S.Niklas)

NGC4414 3cm Total Int. + B-Vectors (VLA)

Dwarf & irregular galaxies NGC 1569 LMC

Faraday rotation

$$R = 0.81 \int_{\log} \frac{n_e}{\mathrm{cm}^{-3}} \frac{B_{\parallel}}{\mu \mathrm{G}} \frac{\mathrm{d}l}{\mathrm{pc}} \operatorname{rad} \mathrm{m}^{-2} \operatorname{intrinsic}$$

 ψ

Faraday Depolarization

Differential Faraday rotation

$$p = p_0 \left| \frac{\sin\left(R\,\lambda^2\right)}{R\,\lambda^2} \right|.$$

Faraday dispersion

$$p = p_0 \frac{1 - \exp\left(-2\,\sigma_R\,\lambda^4\right)}{2\,\sigma_R\,\lambda^4}$$

Burn 1966, Sokoloff et al. 1998

Field strength I

$$I_{\nu} \propto (n_0 B_{\perp}^{(1+s)/2}) \nu^{(1-s)/2}$$

 $B_{\rm eq} \propto I^{2/(\gamma+5)}$

synchrotron emission

assume equipartition cosmic rays and B

Total magnetic field

Integrated fluxes of 74 galaxies

Field strength II

"Typical" equipartition field strengths, 27 galaxies observed since 2000.

Scale lengths

	Scale length [kpc]		Galaxy size	
	$I_{\rm syn}$	B	[kpc]	
NGC 6946	4	16	18	Beck 2007
NGC 253 (polarization)	3&7	13 & 26	28	Heesen et al. 2009
M51	5 to 7	10 to 14	27	Fletcher unpublished
M33	6	24	12	Tabatabaei et al. 2007

Field strength & scale-length

2007

Beck

 $\begin{array}{l} \text{Milky Way} \\ P_{\text{B}} \sim P_{\text{th}} \sim P_{\text{tur}} \sim P_{\text{cr}} \end{array}$

Boulares & Cox, 1990 2008

Tabatabaei et al.

Scale-heights

For unpublished data on the scale-height of the synchrotron emission in six nearby, edge-on galaxies contact:

Marita Krause at the MPIfR, Bonn, Germany.

Transport of cosmic rays & magnetic field in NGC 253

North halo: advection

South halo: diffusion?

synchrotron lifetime

Depolarization 20cm/6cm M31

Differential Faraday rotation

Differential rotation + RM gradient in source

> RM gradient in Faraday screen $h_{th} = 3 h_{syn}$

Small-scale fields in M51

Anisotropic $b \approx 12 \ \mu G$ Isotropic $b \approx 18 \ \mu G$ Mean $B \approx 2 \ \mu G$

Degree of anisotropy ≈ 2

Scaling of fluctuations in Faraday rotation give $l_{turb} \approx 25 \text{ pc}$

Milky Way polarization

B-Field lines are spirals

NGC 4736 / M94

DECLINATION (J2000)

NGC 4736 / M94

B-Field lines are spirals

		pitch a		
	inner	outer	optical	
IC 342	-20°±2	-16°±2	-19°±5	Krause et al. 1989
M31	-17°±4	-8°±3	-7°	Fletcher et al. 2004
M33	-48°±12	-42°±5	-65°±5	Tabatabaei et al. 2009
M51	-20°±1	-18°±1	-20°	Fletcher et al. 2010
M81	-14°±7	-22°±5	-11°→-14°	Krause et al. 1989
NGC 6946	-27°±2	-21°±2		Ehle & Beck 1993

B-field pitch angles vary

NGC 6946

NGC6946 3cm Total Int. + B-Vectors (VLA+Effelsberg)

Copyright: MPIR Bonn (R.Beck)

Ehle & Beck 1993

B-field aligned with CO arm at the arm

Patrikeev et al. 2006

Structure of regular field

NGC 4736 / M94

Polarization angle: $B_{\perp}(r,\phi)$

Faraday rotation:

Mean-field dynamo I

Mean-field dynamo II

m=0 mode by far easiest to produce

Regular B-field structure

Galaxy	m=0	m=1	m=2	
IC 342	1	-	-	Krause et al. 1989
LMC	1	-	-	Gaensler et al. 2005
M31	1	0	0	Fletcher et al. 2004
M33	1	1	0.5	Tabatabaei et al. 2008
M51	1	0	0.5	Fletcher et al. 2010
M81	_	1	_	Krause et al. 1989
NGC 253	1	_	-	Heesen et al. 2009
NGC 1097	1	1	1	Beck et al. 2005
NGC 1365	1	1	1	Beck et al. 2005
NGC 4254	1	0.5	-	Chyży 2005
NGC 4414	1	0.5	0.5	Soida et al. 2002
NGC 6946	1	-	_	Ehle & Beck 1993

all spiral p ≥ 10°

Pitch angles

$$\tan p = \frac{B_r}{B_\theta} \approx -\frac{1}{2} \sqrt{\frac{\pi \alpha}{hG}}$$

 $G = r \frac{d\Omega}{dr}$ shear $\alpha \sim 1 \text{ km/s}$ turbulencehgas disc scale height

Summary

1. Lot of galaxies observed, information needs to be systematically collated.

2. $B_{tot} \approx 15 \ \mu G$, $B_{reg} \approx 5 \ \mu G$, $b_{ran} \approx 13 \ \mu G$.

3. With careful (statistical) analysis can measure B-field properties directly related to theory.

Theory works!

4. New radio telescopes will open new possibilities, related to e.g. weak B-fields.