SEED MFS GENERATED DURING RECOMBINATION

Elisa Fenu

Université de Genève <u>elisa.fenu@unige.ch</u>

[Fenu, Pitrou, Maartens, to appear on the arXiv TOMORROW!]

Elisa Fenu, APC Paris, 14/11/10

HARRISON MECHANISM

• <u>Intuitively</u>: photons (γ) + protons (p) + electrons (e)tight-coupled before recombination

beyond the tightcoupling regime

$$v_{\rm p} - v_{\rm e} \neq 0 \quad \Rightarrow \quad E \neq 0 \quad \Rightarrow \quad B \neq 0$$

[Harrison, '70]

• Thomson crosssection for e $\propto \sigma_{\rm T} \gg {
m Thomson cross-} {
m section for p} \propto \left({m_{\rm e} \over m_{\rm p}}\right)^2 \sigma_{\rm T}$

 \Rightarrow Vorticity of $\gamma \rightarrow$ vorticity of e

 \implies Magnetic Field generation

ELECTRIC FIELD GENERATION

Euler eqs. for p and e $\mathcal{D}(\delta v_{\rm pe}^{\mu}) \sim n x_{\rm e}^2 \eta_{\rm C} \delta v_{\rm pe}^{\mu} + x_{\rm e} E^{\mu}$ $m_{\rm p} n_{\rm p} \tilde{\mathcal{D}}(v_{\rm p}^{\mu}) = \tilde{C}_{\rm pe}^{\mu} + \tilde{C}_{\rm p\gamma}^{\mu}$ $m_{\rm e}n_{\rm e}\tilde{\mathcal{D}}(v_{\rm e}^{\mu}) = -\tilde{C}_{\rm pe}^{\mu} + \tilde{C}_{\rm e\gamma}^{\mu} \Rightarrow$ $+ \sigma_{\rm T} \rho_{\gamma} x_{\rm e} \left(\delta v^{\mu}_{\gamma \rm b} - \Theta^{\mu}_{\ \nu} v^{\nu}_{\rm b} - \delta v^{\mu}_{\rm pe} \right)$ Interaction terms Initial conditions: $E^{\mu} \neq 0$ $\delta v_{
m pe}~\sim~0$ E = 0 = B, $\delta v_{\rm pe} \neq 0 \neq \delta v_{\gamma \rm b}$ Maxwell eq.: electrons and protons $j^{\mu} = x_{\rm e} n \left(v_{\rm p}^{\mu} - v_{\rm e}^{\mu} \right) = {\rm curl} B^{\mu} - E^{\mu \prime}$ always tightly coupled $E^{\mu} \sim \frac{4\rho_{\gamma}\sigma_{\rm T}}{3e} \left(\delta v^{\mu}_{\gamma \rm b} - \frac{2}{5} \Theta^{\mu}_{\ \nu} v^{\nu}_{\rm b} \right) \longrightarrow \text{no } x_{\rm e} !!$ [Tahahashi et al, '08] Elisa Fenu, APC Paris, 14/11/10

TIME SCALES

Second order in perturbation theory

NUMERICAL ANALYSIS

• Curl of the generated EF (Maxwell eq.)

 $\left(a^{2}B^{i}\right)' = -a^{2}\epsilon^{ijk}\partial_{j}\left[\left(1+\Phi-\Psi\right)E_{k}\right]$

- Only the first order scalar potentials Ψ and Φ enter in the evolution equation for the MF
- $\delta v_{\rm pe} \ll \delta v_{\rm b\gamma} \Rightarrow$ solve for the dynamics of b and $\gamma \sim CMB$
- Numerical integration \Rightarrow beyond the tight-coupling regime
- Stop the numerical integration AFTER recombination, since the MF is still produced!

MAGNETIC FIELD GENERATION

 $(a^{2}B^{i})' = \Delta v_{b\gamma}^{(2)} + \delta_{\gamma}^{(1)} + \Phi^{(1)} - \Psi^{(1)}]\Delta v$

- Scalar perturbations cannot generate MF, we need vortical perturbations
- We consider all the source terms, like the second order velocity difference between baryons and photons
- The sum is suppressed on large scales ⇒ if we do not consider the sum, we overestimate the final MF

[Ichiki et al., '07]

 $\Theta_2.v_b$ contribution for k/ k_{eq} =.5,1,2,5,10,20 **Early time and super-Hubble scales** $\delta_{\gamma} \propto \text{const}$ 10^{-23} $k^{3}P_{B}(k)/(2\pi^{2})]^{1/2}$ in Gauss $v_{
m b} - v_{\gamma} \propto R rac{k}{ au'} \left(rac{\delta_{\gamma}}{4} - rac{\mathcal{H}v_{
m b}}{k}
ight) \propto k^3 \eta^5$ 10^{-25} suppressed in tight-coupling limit 10-27 $\sqrt{k^3 P_B(k,\eta)} \propto k^4 \eta^2$ 10^{-29} 0.1 10 100 δ_{γ} . Δv contribution for k/ k_{eq} = .5,1,2,5,10,20 $Log_{10}[a/a_{eq}]$ 10-23 $[k^3 P_B(k)/(2\pi^2)]^{1/2}$ in Gauss $\Theta_{\gamma}^{(1)} \propto \frac{k}{\tau'} v_{\gamma} \propto k^2 \eta^3$ 10-25 $v_{\rm b} \propto k\eta$ 10-27 $\sqrt{k^3 P_B(k,\eta)} \propto k^4 \eta$ 10^{-29} 10 100 0.1 $Log_{10}[a/a_{eq}]$

Elisa Fenu, APC Paris, 14/11/10

FINAL MF

All contributions for $k/k_{eq} = .5, 1, 2, 5, 10, 20$

<u>KEY-POINTS AND PHYSICAL</u> <u>INSIGHT</u>

Tight-coupling limit

 $(a^2 B_1)' \sim \omega_i^{\rm b} + \mathcal{O}(\text{quadratic})$

vorticity of baryons

$$\begin{bmatrix} \omega_{ij}^{\mathrm{pl}'} + \mathcal{H}(2 - 3c_{\mathrm{pl,s}}^2)\omega_{ij}^{\mathrm{pl}} \end{bmatrix} \simeq 0$$
$$\omega_{\mathrm{pl}}^i \simeq \omega_{\mathrm{b}}^i \simeq \omega_{\gamma}^i$$

No vorticity generation at 2nd order in the tight-coupling regime quadratic terms present even in the tightcoupling limit

Vorticity exchange between photons and baryons which sources the MF, present only at 2nd order

[Ichiki et al., '07]

Suppression on large scales $\propto (k\eta)^2$

[Hollenstein et al., '08]

It's the same mechanism!

 Bump after recombination when tight- coupling breaks down ⇒ need of numerical integration