

Searching for the sources of Galactic cosmic rays APC Paris, Dec. 11-14th 2018

Jim Hinton - MPIK

The TeV Sky

Background: Fermi-LAT

VERITAS - Cygnus Region

VERITAS - Cygnus Region

• First HAWC catalogue: 39 sources, 16 new, 507 days

+ Dataset now doubled

Populations

Typically probing few kpc distances

From HESSGP Survey

HESS Galactic Plane Survey

PWNe

Crab Nebula

HESS J1825: Anomalously bright/powerful

3C 58: extremely under-luminous (MAGIC 2015)

• First HAWC catalogue: 39 sources, 16 new, 507 days

+ Dataset now doubled

• First HAWC catalogue: 39 sources, 16 new, 507 days

+ Dataset now doubled

- Very old (10⁵ y) low power systems – visible because they are very close – 200 pc
- Energy density inferred for electrons <1% ISM → Test particles (no longer inside PWN)

Geminga

Local Electrons

e.g. arXiv 1811.07551

HESS Coll. New Spectrum

+ Implies a very local source – 'fading' to get the right spectrum

was planned talk by Daniel Kerszberg

e.g. arXiv 1811.04123

Local Electrons

Daniel Kerszberg

/ 1811.04123

• Brightest objects are ambiguous in terms of electron v. proton acceleration (e.g. RX J1713 + Vela Junior)

• Brightest objects are ambiguous in terms of electron v. proton acceleration (e.g. RX J1713 + Vela Junior)

Particle Energy (eV)

• Brightest objects are ambiguous in terms of electron v. proton acceleration (e.g. RX J1713 + Vela Junior)

- Brightest objects are ambiguous in terms of electron v. proton acceleration (e.g. RX J1713 + Vela Junior)
- Several clear cases of interacting SNRs
 - + At GeV & TeV : e.g. W 28 and IC 443
- Emission correlated with molecular clouds
- Spectral feature consistent with 'pi-zero bump'

- Brightest objects are ambiguous in terms of electron v. proton acceleration (e.g. RX J1713 + Vela Junior)
- Several clear cases of interacting SNRs
 - + At GeV & TeV: e.g. W 28 and IC 443
- Emission correlated with molecular clouds
- Spectral feature consistent with 'pi-zero bump'

To the Knee?

- Steepening in spectra of all known TeV SNR at <=10 TeV
 - + Lack of protons/nuclei > 100 TeV
- o e.g. Cassiopeia A
 - + Young SNR (~300 years), dense environment – looked like best chance for PeV acceleration...
 - + Second component?
- SNRs not the main contributor at/beyond the knee?

Other Accelerators?

Galactic Centre

- + Central molecular zone 'lit up' by cosmic rays
- + Hard excess above the 'sea'
- + Extending to at least 0.5 PeV
- + Sgr A* is injector?

• Stellar Clusters?

- + see arXiv:1804.02331
- + GC cluster
- + Westerlund I & 2
- + Cygnus Cocoon
- + But no clear correlation yet with target material in cases other than CMZ

Eta Carina

Most prominent colliding wind binary

+ Strong winds+shocks

+ Dense environment

+ Looks like calorimetric conditions for pp→pions→gammas in shock of primary stellar wind

+ Electrons disfavoured by energetics and rapid cooling (problem with E_{max})

Acceleration of hadrons up to at least ~TeV

SS 433

After subtracting MGRO J1908+06

SS 433

20 TeV gamma-ray emission with hard spectrum

- + From zones where jets are thought to decelerate
- A very high energy accelerator
- IC origin seems likely
 - + cf X-ray synchrotron
 - + density likely low in these regions

• BUT

- + Very plausible (unavoidable?) that **protons** are co-accelerated to <u>at</u> <u>least</u> the same energies!
- + Plenty of power and v=0.3 c shock!

Conclusions

 Many clues from VHE gamma-ray astronomy on the origin and transport of Galactic cosmic rays

Lacking

- + Sufficient detected objects to reach strong conclusions on populations (possible exception: PWN)
- + Sufficient resolved detail in gamma-ray + gas tracers to remove ambiguities on hadronic origin and CR distribution
- + Good enough sensitivity at high energy to resolve steepening versus cutoffs (and/or check for second components)
- See Werner's talk for solutions!

