Cosmic Ray Small-Scale Anisotropies

Philipp Mertsch with Markus Ahlers

"Searching for the Sources of Galactic Cosmic Rays" Paris, 13 December 2018

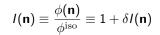
Outline

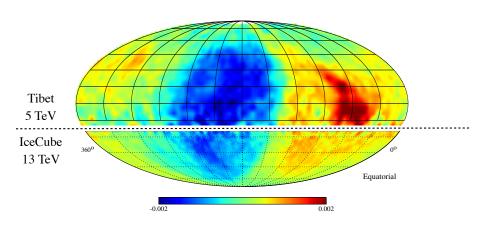
- Observations
- Quasi-linear theory
- 3 Small-scale turbulence model
- 4 Other models for small-scale anisotropies
 - Magnetic lenses etc.
 - Non-uniform pitch-angle scattering
 - Heliospheric effects

Outline

- Observations
- Quasi-linear theory
- 3 Small-scale turbulence model
- Other models for small-scale anisotropies
 - Magnetic lenses etc.
 - Non-uniform pitch-angle scattering
 - Heliospheric effects

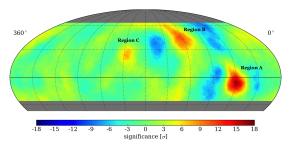
Cosmic ray anisotropies

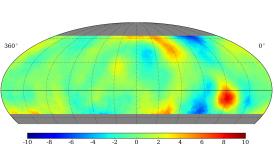




Amenomori *et al.*, ApJ 711 (2010) 119, Saito *et al.*, *Proc. 32nd ICRC* 1 (2011) 62 Aartsen *et al.*, ApJ 826 (2016) 220

Small-scale anisotropies



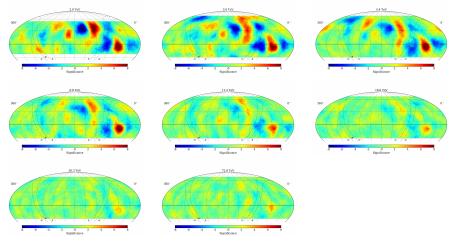


relative intensity [x 10-4]

- subtract off dipole and quadrupole
- smooth with 10° disk
- → small-scale features

Abeysekara et al., ApJ 796 (2014) 108

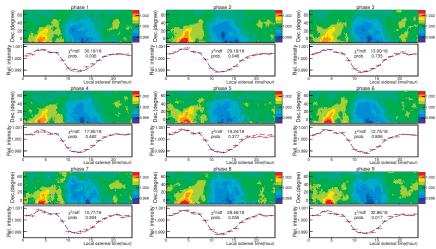
Energy dependence



Abeysekara et al., arXiv:1805.01847

Decrease of amplitude and flip of direction around 100 TeV also seen by IceCube

Time dependence



Amenomori et al., ApJ 711 (2010) 119

No significant time-dependence over 9 years.

Angular power spectrum

HAWC

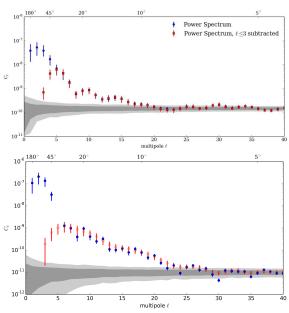
Abeysekara *et al.*, ApJ 796 (2014) 108 also Abeysekara *et al.*, arXiv:1805.01847

IceCube

Aartsen *et al.*, ApJ 826 (2016) 220 IceCube+HAWC

iceCube+nAv

Daz-Vlez *et al.*, arXiv:1708.03005



Angular power spectrum

HAWC

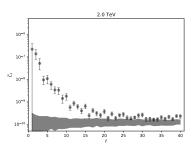
Abeysekara et al., ApJ 796 (2014) 108 also Abeysekara et al., arXiv:1805.01847

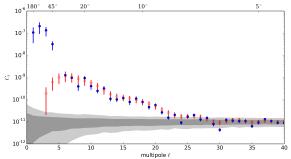
IceCube

Aartsen et al., ApJ 826 (2016) 220

IceCube+HAWC

Daz-Vlez et al., arXiv:1708.03005





Angular power spectrum

HAWC

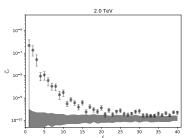
Abeysekara *et al.*, ApJ 796 (2014) 108 also Abeysekara *et al.*, arXiv:1805.01847

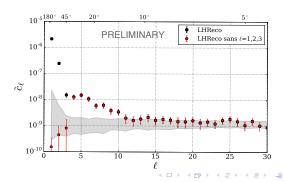
IceCube

Aartsen *et al.*, ApJ 826 (2016) 220

IceCube+HAWC

Daz-Vlez *et al.*, arXiv:1708.03005





Score sheet

Properties

- large-scale anisotropy of the order $10^{-3}\dots 10^{-4}$ at TeV \dots PeV energies
- small-scale anisotropy of similar size
- directional pattern also changes with energy
- no time-dependence

Limitation

Relative intensity in declination bands not fixed by reconstruction \to insensitive to anisotropies that align with Earth's rotation axis

Outline

- Observations
- Quasi-linear theory
- 3 Small-scale turbulence model
- 4 Other models for small-scale anisotropies
 - Magnetic lenses etc.
 - Non-uniform pitch-angle scattering
 - Heliospheric effects

Vlasov equation

Liouville's theorem:

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial t} + \dot{\mathbf{r}} \cdot \nabla_{\mathbf{r}} f + \dot{\mathbf{p}} \cdot \nabla_{\mathbf{p}} f = 0$$

In a regular and turbulent magnetic field:

$$\mathsf{B}(\mathsf{r}) = \mathsf{B}_0 + \delta \mathsf{B}(\mathsf{r}) \equiv p_0/e \left(\Omega + \omega(\mathsf{r})\right)$$

• Angular momentum operator $\mathbf{L} \equiv -\imath \mathbf{p} \times \nabla_{\mathbf{p}}$:

$$\dot{\mathbf{p}}\cdot
abla_{\mathbf{p}}f=\mathbf{p} imes(\mathbf{\Omega}+oldsymbol{\omega}(\mathbf{r}))\cdot
abla_{\mathbf{p}}f=-\imath(\mathbf{\Omega}+oldsymbol{\omega}(\mathbf{r}))\cdot\mathbf{L}f$$

• Deterministic and stochastic operators \mathcal{L}_0 and $\delta \mathcal{L}$:

$$\frac{\partial f}{\partial t} + \underbrace{\left(\dot{\mathbf{r}} \cdot \nabla_{\mathbf{r}} - \imath \mathbf{\Omega} \cdot \mathbf{L}\right)}_{\mathcal{L}_0} f + \underbrace{\left(-\imath \boldsymbol{\omega} \cdot \mathbf{L}\right)}_{\delta \mathcal{L}} f = 0$$

Quasi-linear theory

e.g. Jokipii, Rev. Geophys. 9 (1971) 27

• Equations for averaged phase space density and fluctuations: $f = \langle f \rangle + \delta f$

$$\begin{split} &\frac{\partial}{\partial t} \langle f \rangle + \mathcal{L}_0 \langle f \rangle = - \langle \delta \mathcal{L} \delta f \rangle \,, \\ &\frac{\partial}{\partial t} \delta f + \mathcal{L}_0 \delta f \simeq - \delta \mathcal{L} \langle f \rangle \,. \end{split}$$

• Integration along unperturbed trajectories P(t')

$$\delta f(t, \mathbf{r}, \mathbf{p}) \simeq \delta f(t_0, \mathbf{r}(t_0), \mathbf{p}(t_0)) - \int_{t_0}^t \mathrm{d}t' \Big[\delta \mathcal{L} \langle f \rangle \Big]_{P(t')}$$

• Scattering term $\langle \delta \mathcal{L} \delta f \rangle$ can be approximated as

$$\langle \delta \mathcal{L} \delta f \rangle \simeq - \left\langle \delta \mathcal{L} \int_{-\infty}^t \mathrm{d}t' \Big[\delta \mathcal{L} \langle f \rangle \Big]_{P(t')} \right\rangle \simeq \frac{\partial}{\partial \mu} D_{\mu\mu} \frac{\partial}{\partial \mu} \langle f \rangle$$

ightarrow Pitch-angle diffusion ightarrow spatial diffusion

Outline

- Observations
- Quasi-linear theory
- 3 Small-scale turbulence model
- 4 Other models for small-scale anisotropies
 - Magnetic lenses etc.
 - Non-uniform pitch-angle scattering
 - Heliospheric effects

Small-scale turbulence and ensemble averaging

• in standard diffusion, compute C_{ℓ} from $\langle f \rangle$:

$$C_\ell^{\mathsf{std}} = \frac{1}{4\pi} \int \mathrm{d}\hat{\mathbf{p}}_1 \int \mathrm{d}\hat{\mathbf{p}}_2 \, P_\ell(\hat{\mathbf{p}}_1 \cdot \hat{\mathbf{p}}_2) \langle f(\hat{\mathbf{p}}_1) \rangle \langle f(\hat{\mathbf{p}}_2) \rangle$$

• however, in an individual realisation of δB , $\delta f = f - \langle f \rangle \neq 0$

$$\langle \mathit{C}_{\ell} \rangle = \frac{1}{4\pi} \int \mathrm{d} \hat{\mathbf{p}}_1 \int \mathrm{d} \hat{\mathbf{p}}_2 \, \mathit{P}_{\ell} \big(\hat{\mathbf{p}}_1 \cdot \hat{\mathbf{p}}_2 \big) \langle \mathit{f} \big(\hat{\mathbf{p}}_1 \big) \mathit{f} \big(\hat{\mathbf{p}}_2 \big) \rangle$$

• if $f(\hat{\mathbf{p}}_1)$ and $f(\hat{\mathbf{p}}_2)$ are correlated,

$$\langle f(\hat{\mathbf{p}}_1)f(\hat{\mathbf{p}}_2)\rangle \geq \langle f(\hat{\mathbf{p}}_1)\rangle\langle f(\hat{\mathbf{p}}_2)\rangle \quad \Rightarrow \quad \langle C_\ell\rangle \geq C_\ell^{\mathsf{std}}$$

Source of the small scale anisotropies?

Giacinti & Sigl, PRL 109 (2012) 071101

Ahlers, PRL 112 (2014) 021101, Ahlers & Mertsch, ApJL 815 (2015) L2, Pohl & Rettig, *Proc. 36th ICRC* (2016) 451, López-Barquero *et al.*, ApJ 830 (2016) 19, López-Barquero *et al.* ApJ 842 (2017) 54

Gradient ansatz

Vlasov equation:

$$\frac{\partial f}{\partial t} + \underbrace{\left(\dot{\mathbf{r}} \cdot \nabla_{\mathbf{r}} - \imath \mathbf{\Omega} \cdot \mathbf{L}\right)}_{\mathcal{L}_0} f + \underbrace{\left(-\imath \boldsymbol{\omega} \cdot \mathbf{L}\right)}_{\delta \mathcal{L}} f = 0$$

• Gradient ansatz:

$$f(\mathbf{r}, \mathbf{\hat{p}}) = f(\mathbf{r}_0, \mathbf{\hat{p}}) + (\mathbf{r}_0 - \mathbf{r}) \cdot \mathbf{G}$$

→ Dipolar source term in the Vlasov equation:

$$\frac{\partial f}{\partial t} + \underbrace{\left(-\imath \mathbf{\Omega} \cdot \mathbf{L}\right)}_{\mathcal{L}'_0} f + \underbrace{\left(-\imath \boldsymbol{\omega} \cdot \mathbf{L}\right)}_{\delta \mathcal{L}} f = c \,\hat{\mathbf{p}} \cdot \mathbf{G}$$

Mixing matrices

Formal solution of Vlasov equation:

$$f(\mathbf{r},\mathbf{p},t) = U_{t,t_0}f(\mathbf{r},\mathbf{p},t_0) + \int_{t_0}^t \mathrm{d}t' U_{t,t'} c\,\hat{\mathbf{p}}\cdot\mathbf{G}$$

 \rightarrow Differential equation for $\langle C_{\ell} \rangle$,

$$rac{\mathrm{d}}{\mathrm{d}t}\langle C_\ell
angle(t) + \left(\lim_{t_0 o t}rac{\delta_{\ell\ell_0}-M_{\ell\ell_0}(t,t_0)}{t-t_0}
ight)\langle C_{\ell_0}
angle(t) = rac{8\pi}{9}K|\mathbf{G}|^2\delta_{\ell 1}$$

where

mixing $\ell_0 \to \ell$

$$M_{\ell\ell_0}(t,t_0) = rac{1}{4\pi}\int \mathrm{d}\mathbf{\hat{p}}_A \int \mathrm{d}\mathbf{\hat{p}}_B \mathrm{P}_\ell(\mathbf{\hat{p}}_A\cdot\mathbf{\hat{p}}_B) \langle U_{t,t_0}^A U_{t,t_0}^{B*}
angle rac{2\ell_0+1}{4\pi} \mathrm{P}_{\ell_0}(\mathbf{\hat{p}}_A\cdot\mathbf{\hat{p}}_B)$$

• Consider the steady-state, $d\langle C_{\ell} \rangle/dt = 0$

One particle propagator

"Feynman" rules

• free propagator:

 $U_{t,t'}^{(0)}$

t----t'

stochastic field:

 $\delta \mathcal{L}(t)$

t

correlation:

 $\langle \delta \mathcal{L}(t) U_{t,t'}^{(0)} \delta \mathcal{L}(t') \rangle$

t

One particle propagator

"Feynman" rules

• free propagator:

 $U_{t,t'}^{(0)}$

• stochastic field:

 $\delta \mathcal{L}(t)$

• correlation:

 $\langle \delta \mathcal{L}(t) U_{t,t'}^{(0)} \delta \mathcal{L}(t') \rangle$

Double propagator

For $\langle f(\hat{\mathbf{p}}_1)f(\hat{\mathbf{p}}_2)\rangle$ we need correlated evolution of two particles:

$$\langle U_{t,t_0}^A U_{t,t_0}^{B*} \rangle = \underline{} + \underbrace{} + \underbrace$$

Ignoring correlations

• If $\langle f(\hat{\mathbf{p}}_1)f(\hat{\mathbf{p}}_2)\rangle = \langle f(\hat{\mathbf{p}}_1)\rangle\langle f(\hat{\mathbf{p}}_2)\rangle$

$$\langle U_{t,t_0}^A U_{t,t_0}^{B*} \rangle \simeq \underline{} + \underline{} + \underline{} + \underline{} + \underline{}$$

• Mixing matrix diagonal:

$$M_{\ell\ell_0}(t,t_0)\sim\delta_{\ell\ell_0}$$

$$rac{\mathrm{d}}{\mathrm{d}t} \langle \mathcal{C}_\ell
angle(t) + \left(\lim_{t_0 o t} rac{\delta_{\ell\ell_0} - M_{\ell\ell_0}(t,t_0)}{t-t_0}
ight) \langle \mathcal{C}_{\ell_0}
angle(t) = rac{8\pi}{9} \mathcal{K} |\mathbf{G}|^2 \delta_{\ell 1} \,,$$

→ only dipolar anisotropy:

$$\langle C_{\ell} \rangle \propto \delta_{\ell 1} \,,$$

With correlations

• $\langle f(\hat{\mathbf{p}}_1)f(\hat{\mathbf{p}}_2)\rangle \neq \langle f(\hat{\mathbf{p}}_1)\rangle \langle f(\hat{\mathbf{p}}_2)\rangle$

$$\langle U_{t,t_0}^A U_{t,t_0}^{B*} \rangle \quad \simeq \quad \boxed{} + \boxed{} + \boxed{} + \boxed{} + \boxed{}$$

Mixing matrix not diagonal:

$$M_{\ell\ell_0}(t,t_0) \sim \, \delta_{\ell\ell_0} + \sum_{\ell_A} \kappa_{\ell_A}(t-t_0) igg(egin{array}{ccc} \ell & \ell_A & \ell_0 \ 0 & 0 & 0 \end{array} igg)^2 (2\ell_0+1)\ell_0(\ell_0+1)$$

$$rac{\mathrm{d}}{\mathrm{d}t} \langle \mathcal{C}_\ell
angle(t) + \left(\lim_{t_0 o t} rac{\delta_{\ell\ell_0} - M_{\ell\ell_0}(t,t_0)}{t-t_0}
ight) \langle \mathcal{C}_{\ell_0}
angle(t) = rac{8\pi}{9} \mathcal{K} |\mathbf{G}|^2 \delta_{\ell 1} \,,$$

With correlations

• $\langle f(\hat{\mathbf{p}}_1)f(\hat{\mathbf{p}}_2)\rangle \neq \langle f(\hat{\mathbf{p}}_1)\rangle \langle f(\hat{\mathbf{p}}_2)\rangle$

$$\langle U_{t,t_0}^A U_{t,t_0}^{B*} \rangle \quad \simeq \quad \boxed{} + \boxed{} + \boxed{} + \boxed{} + \boxed{}$$

Mixing matrix not diagonal:

$$M_{\ell\ell_0}(t,t_0) \sim \, \delta_{\ell\ell_0} + \sum_{\ell_A} \kappa_{\ell_A}(t-t_0) igg(egin{array}{ccc} \ell & \ell_A & \ell_0 \ 0 & 0 & 0 \end{array} igg)^2 (2\ell_0+1)\ell_0(\ell_0+1)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle \mathcal{C}_{\ell} \rangle (t) + \left(\lim_{t_0 \to t} \frac{\delta_{\ell \ell_0} - M_{\ell \ell_0}(t, t_0)}{t - t_0} \right) \langle \mathcal{C}_{\ell_0} \rangle (t) = \frac{8\pi}{9} K |\mathbf{G}|^2 \delta_{\ell 1} \,,$$

→ Gradient source term is mixing into higher harmonics!

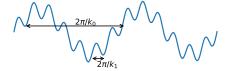
Toy model

Isotropic turbulence tensor:

$$\langle \tilde{\omega}_i(\mathbf{k}) \, \tilde{\omega}_j^*(\mathbf{k}') \rangle = \frac{g(k)}{k^2} \left(\delta_{ij} - \hat{k}_i \hat{k}_j \right) \delta(\mathbf{k} - \mathbf{k}')$$

Band-limited white noise:

$$g(k) = g_0 \quad \text{if} \quad k_0 \le k < k_1$$

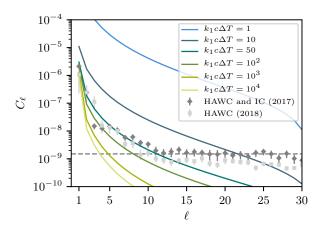


In order to get local operators

$$\Delta T \equiv (t - t_0) \rightarrow 0$$
 while $k_1 \Delta T = \text{const.}$

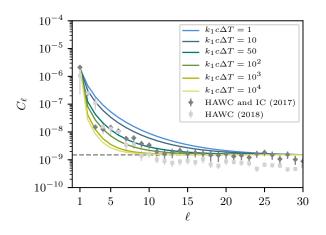
• Require $k_1 \Delta T > 1$ and $k_0 \Delta T \ll 1$

Results



- Fix source term $K|\mathbf{G}|^2$ to $10^{-4}k_0$
- No shot noise

Results



- Let source term $K|\mathbf{G}|^2$ float
- Add shot noise due to experimental statistics

Discussion

Good agreement over wide parameter range

→ Beware of cosmic variance:

$$\Delta \textit{C}_{\ell} = \sqrt{2/(2\ell+1)} \langle \textit{C}_{\ell} \rangle$$

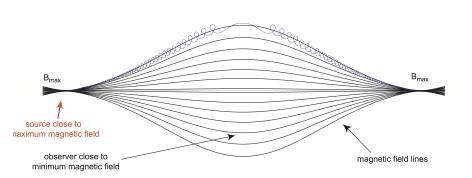
- The anisotropy of the ensemble average might not be perfectly dipolar Giacinti & Kirk, ApJ 835 (2017) 258
- Need to include regular field Ω
- Test different turbulence tensors

Outline

- Observations
- Quasi-linear theory
- 3 Small-scale turbulence model
- 4 Other models for small-scale anisotropies
 - Magnetic lenses etc.
 - Non-uniform pitch-angle scattering
 - Heliospheric effects

Focussing CRs

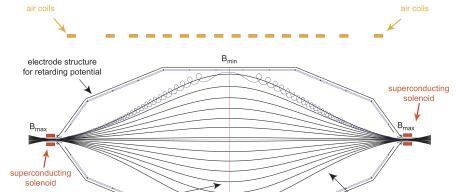
$$\frac{p_{\perp}^2}{2B} = \text{const.}$$



momentum of a CR particle relative to the magnetic field direction

11111111

Focussing CRs



momentum of an electron relative to the magnetic field direction without retarding potential

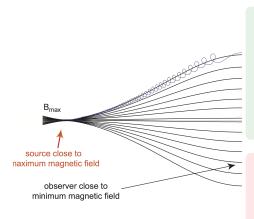
Beck et al., JINST 9 (2014) P11020

minimum magnetic field _

maximum electric potential

magnetic field lines

Focussing CRs



momentum of a CR particle relative to the ma

11111111

• beam width

$$\delta heta \simeq \sqrt{rac{B_{
m min}}{B_{
m max}}} \ \simeq 5^{\circ} \left(rac{B_{
m max}/B_{
m min}}{100}
ight)^{-1/2}$$

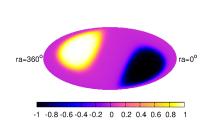
- beam can be subdominant
- source needs to be close to maximum → unnatural?
- small-scale turbulence will broaden beam \rightarrow source needs to be closer than scattering length $\mathcal{O}(10)$ pc at $1\,\text{PeV}$

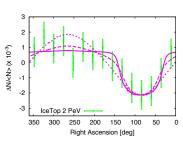
Non-uniform pitch-angle scattering

Solve Fokker-Planck equation but with $D_{\mu\mu} \neq D_0 (1-\mu^2)$

- **1** Goldreich-Sridhar turbulence o narrow peak in $D_{\mu\mu}$ o narrow beam in CRs Malkov *et al.*, ApJ 721 (2010) 750
- 2 modification of the large-scale anisotropy:
 - compute $D_{\mu\mu}$ in quasi-linear theory in various turbulence models
 - can have peak close to $\mu = 0$
 - ightharpoonup consider higher-order terms in series in μ
 - ▶ large-scale anisotropy modified

Giacinti & Kirk, ApJ 835 (2017) 258





Are heliospheric effects strong enough?

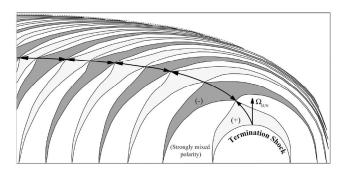
- Solar modulation in force field approximation with $\mathcal{O}(100)\,\mathrm{MeV}$ potentials
- → Can this effect TeV-PeV cosmic rays?
 - Alignment of excess region with heliotail
 - $r_g \simeq 200 \, (R/{
 m TV}) (B/\mu{
 m G})^{-1} \, {
 m AU} \, {
 m is} \lesssim {
 m size} \, {
 m of heliosphere}$
 - Need not modify isotropic flux, but only arrival directions:

Drury (2013)

- Electric field due to relative bulk speed of ISM CRs in heliosphere: $\mathbf{E} = -\mathbf{v} \times \mathbf{B}$
- $v = 10 \, \mathrm{km/s}$, $B = 10 \, \mu \mathrm{G} \rightarrow 1.5 \, \mathrm{MV/AU}$
- If field coherent over $100\,\mathrm{AU} o 150\,\mathrm{MV}$
- 10⁻⁴ effect for TeV particles

Explaining the excess in the heliotail

Lazarian and Desiati, ApJ 722 (2010) 188, Desiati and Lazarian, ApJ 762 (2013) 44



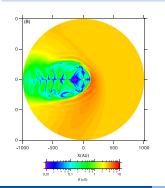
Nerney, Suess and Schmahl, JGR 100 (1995) 3463

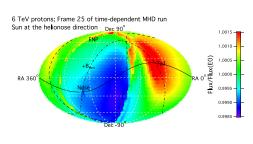
- ullet Reconnection in the heliotail o harder spectrum in excess region
- Super-Alfvénic turbulence with $\lambda_{\mathsf{mfp}} \sim r_{\mathsf{g}} o$ excess in the heliotail
- ullet Misalignment of ISM flow and B direction o non-dipolar anisotropies
- ullet Reconstruction errors of large-scale (angular) gradient o small-scale structure

Detailed numerical model

Zhang, Zuo and Pogorelov, ApJ 790 (2014) 5

- state-of-the-art MHD model of heliosphere
- backtrack from initial distribution with $\nabla_{\perp} \ln n$, dipole and quadrupole
- acceleration in electric fields
- 2 non-uniform pitch-angle scattering along the regular magnetic field
- 3 drift diffusion perpendicular to the field ("B-cross-gradient" forces)

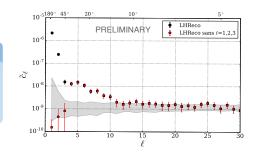


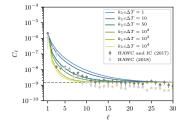


Summary

Observations

- anisotropies down to $\sim 5^\circ$
- power law in ℓ for $\ell > 5$
- no time-dependence





Small-scale turbulence model

Correlated propagation of particle pairs:

- Stochastic differential equation
- Diagrammatic technique
- Predicts power law spectrum

Time evolution operator

Liouville's theorem:

$$\frac{\partial}{\partial t}f + (\mathcal{L}_0 + \delta\mathcal{L}(t))f(t) = 0 \qquad i\hbar \frac{\partial}{\partial t}|\psi(t)\rangle - (H_0 + H_I)|\psi(t)\rangle = 0$$

• Formally solved as $f(\mathbf{r}, \mathbf{p}, t) = U_{t,t_0} f(\mathbf{r}, \mathbf{p}, t_0)$

$$|\psi(t)\rangle = U(t,t_0)|\psi(t_0)\rangle$$

• With free propagator:

$$U_{t,t_0}^{(0)} = \exp\left[-\int_{t_0}^t \mathrm{d}t' \mathcal{L}_0(t')
ight]$$

$$U^{(0)}(t,t_0) = \exp\left[-iH_0(t-t_0)/\hbar\right]$$

• And time evolution operator:

$$U_{t,t_0} = U_{t,t_0}^{(0)} \mathcal{T} \exp \Big[- \int_{t_0}^t \mathrm{d}t' \underbrace{\left(U_{t',t_0}^{(0)}\right)^{-1} \delta \mathcal{L}(t') U_{t',t_0}^{(0)}}_{\sim \text{interaction picture Hamiltonian}} \Big]$$

Mean Green's function

Perturbative expansion (Dyson series):

$$U_{t,t_0} = U_{t,t_0}^{(0)} + \sum_{n\geq 1} (-1)^n \int_{t_0}^t \mathrm{d}t_n \int_{t_0}^{t_n} \mathrm{d}t_{n-1} \dots \int_{t_0}^{t_2} \mathrm{d}t_1 \times U_{t,t_n}^{(0)} \delta \mathcal{L}(t_n) U_{t_n,t_{n-1}}^{(0)} \delta \mathcal{L}(t_{n-1}) \dots \delta \mathcal{L}(t_1) U_{t_1,t_0}^{(0)}.$$

- But $\delta \mathcal{L}(t)$ is a random variable. So what is $\langle U_{t,t_0} \rangle$?
- Evaluate expectation values in Gaussian approximation:

$$\langle \delta \mathcal{L}(t_n) \delta \mathcal{L}(t_{n-1}) \dots \delta \mathcal{L}(t_1) \rangle \simeq \langle \delta \mathcal{L}(t_n) \delta \mathcal{L}(t_{n-1}) \rangle \dots \langle \delta \mathcal{L}(t_1) \delta \mathcal{L}(t_0) \rangle + \text{permut.}$$

Mean Green's function

• Perturbative expansion (Dyson series):

$$U_{t,t_0} = U_{t,t_0}^{(0)} + \sum_{n\geq 1} (-1)^n \int_{t_0}^t \mathrm{d}t_n \int_{t_0}^{t_n} \mathrm{d}t_{n-1} \dots \int_{t_0}^{t_2} \mathrm{d}t_1 \\ \times U_{t,t_n}^{(0)} \delta \mathcal{L}(t_n) U_{t_n,t_{n-1}}^{(0)} \delta \mathcal{L}(t_{n-1}) \dots \delta \mathcal{L}(t_1) U_{t_1,t_0}^{(0)}.$$

- But $\delta \mathcal{L}(t)$ is a random variable. So what is $\langle U_{t,t_0} \rangle$?
- Evaluate expectation values in Gaussian approximation:

$$\langle \delta \mathcal{L}(t_n) \delta \mathcal{L}(t_{n-1}) \dots \delta \mathcal{L}(t_1) \rangle \simeq \langle \delta \mathcal{L}(t_n) \delta \mathcal{L}(t_{n-1}) \rangle \dots \langle \delta \mathcal{L}(t_1) \delta \mathcal{L}(t_0) \rangle + \mathsf{permut}.$$

Fourth order term:

Resummation and Bourret approximation

- Full series convergent, but partial series can diverge
- → Resummation of connected diagrams into "mass operator"

so summands in $\langle U_{t,t_0} \rangle$ factorise:

Bourret approximation: approximate mass operator with its first term,

$$===-+-\stackrel{\cdots}{\longleftarrow}+-\stackrel{\cdots}{\longleftarrow}+\dots$$

Diffusion on sphere

• For homogeneous and static turbulence and $\Omega=0$:

$$\langle U_{t,t_0} \rangle \simeq e^{-\nu(t-t_0)\mathbf{L}^2}$$

• Diffusion equation in $\hat{\mathbf{n}}$:

$$\frac{\partial}{\partial t}f(t,\mathbf{\hat{n}}) - \nu \Delta f(t,\mathbf{\hat{n}}) = 0$$

• Laplacian on sphere (for $|\mathbf{r}| = 1$):

$$\Delta = -L^2$$

Solved by:

$$f(t, \mathbf{\hat{n}}) = e^{-\nu(t-t_0)\mathbf{L}^2} f(t_0, \mathbf{\hat{n}}) = \langle U_{t,t_0} \rangle f(t_0, \mathbf{\hat{n}})$$

Bourret propagator describes isotropic pitch-angle scattering

