# The Baikal-GVD: first results

Zh.-A. Dzhilkibaev, for the Baikal Collaboration APC Paris-December, 11-14, 2018

## **Baikal GVD**

baikalweb.jinr.ru

9 institutes ~70 scientists

St-Petersburg Marin Tech. U

EvoLogics GmbH Berlin N-Novgorod Tech. U

INR <sup>mbH</sup>JINR

MSU

Prague Cz Tech U Bratislava CU Irkutsk U

## Gigaton Volume Detector (GVD) in Lake Baikal

### **Objectives:**

- km3-scale 3D-array of photo sensors
- flexible structure allowing an upgrade and/or a rearrangement of the main building blocks (clusters)
- high sensitivity and resolution of neutrino energy, direction and flavor content

### **Central Physics Goals:**

- Investigate Galactic and extragalactic neutrino
- "point sources" in energy range > TeV
- Diffuse neutrino flux energy spectrum, local and global anisotropy, flavor content
- Transient sources (GRB, ...)
- Dark matter indirect search
- Exotic particles monopoles, Q-balls, nuclearites, ...

## Baikal-GVD : phase 1 (up to 2021)



### • Location: 104°25' E; 51°46' N

#### Northern hemisphere– GC (~18h/day) and Galactic plane survey



#### Sky coverage



### The site

#### Location: 104°25' E; 51°46' N

#### Shore station



Baika'lsk

THE STREET WITH THE STREET WITH THE REPORT OF

36 km

Workshop&Storage facilities

#### Site:

- 1370 m maximum depth
- Distance to shore ~4 km
- No high luminosity bursts from biology.
- No K<sup>40</sup> background.

*Baikal water* Abs.Length: 22 ± 2 m Scatt.Length: 30-50 m





Image Landsat





### • Water properties



- Absorption length: ~ 22-24 m
- Scattering length:  $L_s \sim 30-50 \text{ m}$  $L_{eff} = L_s /(1 - \langle \cos \theta \rangle) \sim 300-500 \text{ m}$
- Strongly anisotropic phase function: <cosθ> ~ 0.9

• Moderately low background in fresh water:

15 – 40 kHz (R7081HQE) absence of high luminosity bursts from biology and K<sup>40</sup> background.

### South Baikal in Feb and Apr



## Infrastructure (site)

#### Status:

The DUBNA cluster installed on April 2015 has been upgraded to a final state one with 288 optical modules in 2016 spring. The second cluster started to operate on April 2017 and the third one in April 2018.

- The new data taking center at the array site has been installed.
- The new shore lab was installed on the site during summer 2017.
- The building in Baikalsk is prepared for a local lab and a temporary storage for optical modules of the next stages of the detector.









#### JINR FACILITIES FOR THE OPTICAL MODULES PRODUCTION



Now we have 450 OMs ready to use: ~1.5 clusters



Equipment allows to assemble and test up to 12 OMs per day

#### **INR TEST FACILITIES FOR THE DAQ ELECTRONICS**

Facility is designed for long-term tests of all cluster components with full power load.



String electronics: *3 Section modules and String module (36 ADC channels).*





6 strings (216 ADC channels) is under testing now

- Signals on the ADC are simulated by generators with an adjustable frequency.
- Software for data acquisition is the same as for real telescope.

## Stages of deployment of the Baikal-GVD

| Configuration          | 2015                 | 2016                 | 2017                | 2018                 |
|------------------------|----------------------|----------------------|---------------------|----------------------|
| The number of OMs      | 192 (8str×24)        | 288 (8str×36)        | 576                 | 864                  |
| Geometric sizes        | Ø80m×345m            | Ø120m×525m           | 2ר120m×525m         | 3ר120m×525m          |
| Eff. Vol. (E > 100TeV) | 0.03 km <sup>3</sup> | 0.05 km <sup>3</sup> | 0.1 km <sup>3</sup> | 0.15 km <sup>3</sup> |

## **Status-2018 of Baikal-GVD**



## Detection Modes – cascades&muons

μ/casc. ~ 1/3 for 1:1:1



### **Detector response**



## **Ernie and Bert**



"Bert" 1.04 PeV Aug. 2011



"Ernie" 1.14 PeV Jan. 2012



- Best fit single powerlaw
  2.19<sup>+1.10</sup><sub>-0.55</sub> × E<sup>-2.91(+0.33,-0.22)</sup>
- Prompt 90% upper limit 12.3×BERSS model
- Fit performed for events above 60TeV
- Compatible with results from 6 year analysis



E<sup>2</sup> Φ=2.19\*10-18(E/100TeV)-0.91 [GeV cm<sup>-2</sup> s<sup>-1</sup> sr<sup>-1</sup>]

All energies - 102 events

Honda, Kasahara, Midorikawa, Sanuki Phys.Rev. D75 (2007) 043006 Bhattacharya, Enberg, Reno, Sarcevic, Stasto JHEP 1506 (2015) 110

> 60 TeV - 60 events

Juliana Stachurska

### Neutrino Effective Area IceCube HESE

## Cascades detection with GVD Cluster



#### Energy spectrum of astrophysical neutrinos measured by IceCube: 4.1.10<sup>-6</sup> E<sup>-2.46</sup> GeV<sup>-1</sup> cm<sup>-2</sup> s<sup>-1</sup> sr<sup>-1</sup>

Expected number of detected events in GVD Cluster from astrophysical neutrinos for 1 yr. observation

#### year N<sub>hit</sub>>20 **Events per** $10^{-1}$ $(v_e + v_\mu)_{atm}$ **F**<sup>-2.46</sup> $10^{-2}$ $10^{-3}$ $10^{-4}$ 1.5 2.5 3 3.5 2 4 log10(E/TeV)

## Event selection criteria (E<sub>sh</sub> >100 TeV, N<sub>hit</sub> >20):

~0.6 events/yr are expected

## A search for cascades induced by astrophysical neutrinos (analysis of 2015 data – *PRELIMINARY!*)

- Total number of accumulated events 437 970 024 events (thresholds: low/high = 1.5/4 ph.el.)
- ➤ Life time 3 597 921 s = 41.6 days

➢ After causality cuts – 18 840 822 events

 $(N_{hit} > 3; |t_i - t_j| < \Delta r_{ij}/v + \delta t)$ 

### Hit OMs multiplicity after all cuts



## Cascade: E=107 TeV, $\theta = 56.6^{\circ}$ , $\varphi = 130.5^{\circ}$ x=-48.5 m, y=47m, z=-59 m, $\rho=68$ m

All hit OMs (51 hits)

Selected hits (24 hits)



### 1. MJD 0.573420552199E+05 RA 139.5° Dec 5.56°



## A search for cascades induced in GVD-2016 (*Preliminary*)

➤ Life time – 15 693 192 s = 182.0 days

Total number of accumulated events – 685523932 events (thresholds: low/high = 1.5/4 ph.el. & Q > 1.5 ph.el.)

> After causality cuts – 327053415 events

$$(N_{hit} > 4; |t_i - t_j| < \Delta r_{ij}/v + \delta t)$$





#### Event selection

| Cuts                                                | Events | Rejection |  |  |  |
|-----------------------------------------------------|--------|-----------|--|--|--|
| Coordinates<br>reconstruction & N <sub>hit</sub> >9 | 577495 | 1         |  |  |  |
| $\chi^2_t < 4$                                      | 2405   | 1/240     |  |  |  |
| Energy reconstruction                               |        |           |  |  |  |
| $L_{a} < 20$                                        | 374    | 1/6.4     |  |  |  |
| $\eta > 0$                                          | 159    | 1/2.4     |  |  |  |



Hit OM multiplicity of events with E > 10 TeV



Hit OM multiplicity of events surviving different cuts

 $\rho, m$ 

Events

## Cascade: E=157 TeV, $\theta = 57^{\circ}$ , $\phi = 249^{\circ}$ x=-25m, y=-37m, z=11m, $\rho$ =44m

#### All hit OMs (93 hits)

#### Selected hits (53 hits)



#### 2. MJD 0.575074357292E+05 RA 173.4° Dec 13.95°



Events from above event selections with energy cut.



## **Multi-messenger studies**

### "all-sky" observatories

### follow-up observatories



### GW170817/GRB170817A from binary neutron star merger



### Search for neutrinos in coincidence with GW170817

Search for neutrinos by muon and cascade detection in two time-windows:  $GW \pm 500$  sec (prompt emission) GW + 14 days (delayed emission)

Horizons of arrays at equatorial coordinates



#### Search for neutrinos within $GW \pm 500$ s time-window by cascade mode

| Cl.#1, run g0269; duration 39347 sec; 2463792 ev. |                                |  |  |
|---------------------------------------------------|--------------------------------|--|--|
| Cut                                               | Events in $\pm$ 500 sec window |  |  |
| N <sub>hit</sub> > 5 OM/3 Str.                    | 731                            |  |  |
| $\chi^{2}_{t} < 10$                               | 108                            |  |  |
| η > 0                                             | 3                              |  |  |
| L <sub>a</sub> < 30                               | 2                              |  |  |
| ψ < 20°                                           | 0 (0.05 events is expected)    |  |  |



±500*sec* 



#### Search for neutrinos in GW170817 following 14 days time-window



| Selection cuts                    |                         |  |  |
|-----------------------------------|-------------------------|--|--|
| Cut                               | Events in 14 day window |  |  |
| N <sub>hit</sub> > 7 OM/3<br>Str. | 384116                  |  |  |
| $\chi^2_t < 6$                    | 12186                   |  |  |
| η > 0                             | 445                     |  |  |
| L <sub>a</sub> < 30               | 372                     |  |  |
| ψ < 20°                           | 0                       |  |  |

### Upper limits on fluence of neutrinos associated with GW170817

JETP Letters v.108-12 (2018), arXiv:1810.10966

No neutrino events associated with GW170817 have been observed Using cascade mode within  $\pm$  500 sec window and 14 days after the neutron star merger.

Assuming E<sup>-2</sup> spectral behavior and equal fluence in all flavors upper limits at 90% c.l. have been derived on the neutrino fluence from GW170817 for each energy decade.



## 22. September 2017, 20:54 UTC



Archive data: 3.5  $\sigma$  neutrino excess end 2014/early 2015 **TXS 0506+056** 

~ 4 billion light years

# Search for neutrinos in coincidence with IC170922A in Baikal-GVD

#### **PRELIMINARY!!!**

#### TXS0506+056: IC170922A





#### Baikal-GVD ANTARES

#### ANTARES - 104.2°

Baikal-GVD - 63° - search by cascade detection mode

#### Search for neutrinos within ±1 hour time-window around IC170922A

Events selection cuts

| Cut                            | Events in $\pm 1$ hour window |
|--------------------------------|-------------------------------|
| N <sub>hit</sub> > 5 OM/3 Str. | 1345                          |
| $\chi^{2}_{t} < 10$            | 221                           |
| η > 0                          | 11                            |
| L <sub>a</sub> < 30            | 9                             |
| ψ < 20°                        | 0                             |



Angular distance around the direction of the source



No neutrino candidate event was recorded within ± 1 hour time window around the IC170922A

#### Search for neutrinos within $\pm 1$ day time-window around IC170922A





No neutrino events associated with IC170922A have been recorded

## **GVD** plans

#### **Timeline GVD 1**

| Year               | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
|--------------------|------|------|------|------|------|------|
| Nb. of<br>clusters | 1    | 2    | 3    | 5    | 7    | 9    |
| Nb. of OMs         | 288  | 576  | 864  | 1440 | 2016 | 2592 |

#### Main tasks 2019

- Two clusters deployment
- Reliability increasing.
- Additional facilities for long-term tests of electronics are foreseen.
- Created a conditions for the laying of two shore cables during the season.
- The increasing of manpower during the expedition to Baikal is foreseen.

Completion of equipment preparation for two clusters is planned for December 2018.





## Summary

- Prototyping & Early Construction Phase of Baikal-GVD project is concluded with construction and commission of the first GVD Cluster "Dubna" in 2015
- Array "Dubna" was upgraded to baseline configuration of GVD cluster with 288 OMs in 2016.
- The second and the third full-scale GVD clusters were installed and commissioned in April 2017 and April 2018. GVD-2018 the largest Northern neutrino telescope to date.
- Completion of the GVD-1 is expected in 2020-2021.

## THANK YOU!!!



## Search for muon neutrinos (2016 yr.)

## Reconstructed zenith angle distribution with cuts



Polar angle distribution of muons selected with the requirement of at least 6 hit OM's at 3 strings. Data (black dots) is compared to the atmospheric muon flux generated with CORSIKA (dashed histogram) and passed through the detector simulation (histogram)

### **Atmospheric background suppression**

After track reconstruction and cuts on quality variables have been done, Boosted decision tree (BDT) was used.

BDT is trained on events reconstructed as upgoing with  $0 < \theta < 80$  deg.

30k signal events 9k background evts.

signal is separated from the background by the BDT classifier value

cut BDT > 0.2 is 80% efficient for signal > 0.25 -> 65% efficient > 0.3 -> 40% eff.



### 2016: 33 live days

## Preliminary

#### Angular distribution for BDT > 0.2 cut

- 23 events were selected in the signal region in data
- ~ 3 events estimation of atm. muons background
- ~36 events estimation of signal atm. neutrinos





### Hit OM multiplicity dependence on cuts



| Cuts                                        | Events    | Rejection |
|---------------------------------------------|-----------|-----------|
| Reconstruction of coordinates (Q>1.5ph.el.) | 1 171 077 | 1         |
| $(\chi^2 < 2)$                              | 316229    | 1/3.7     |
| $(L_a < 10)\&(\eta > 0)$                    | 12931     | 1/90      |
| E > 30  TeV                                 | 1291      | 1/900     |



One event with N<sub>hit</sub> = 17 OMs and E > 100 TeV is delected!

| Cuts        | Events | Rejection |
|-------------|--------|-----------|
| E > 30  TeV | 1291   | 1/900     |
| E > 60  TeV | 859    | 1/1360    |
| E > 100 TeV | 539    | 1/2000    |