

Searching for Galactic neutrino emissions with ANTARES and KM3NeT

Luigi Antonio Fusco – Laboratoire APC on behalf of the ANTARES and KM3NeT Collaborations

Neutrino astronomy in a nutshell

Neutrino telescopes (under the sea*): how-to

- Large interaction volume
- Transparent medium
- Large number of optical sensors
- Precision measurement of the detected photons
- Large overburden (+ the Earth, just in case)
- Collect the data

Why a km³ neutrino telescope in the sea/underwater?

- Water is optimal for light
 - Limited scattering \rightarrow direct photons
 - Homogeneous medium \rightarrow easy sim
 - → angular reconstruction accuracy
- Large depth accessible
 - Limit the CR-induced backgrounds

- K40 (if salty) and biological \rightarrow all-data to shore and filtering

Why a km³ neutrino telescope in the Mediterranean Sea/North?

Soft spectra from γ obs. \rightarrow lowE threshold analysis

The ANTARES detector

Journal of Physics G **43 (8)**: 084001, 2016

The KM3NeT/ARCA detector

2 Building blocks, 115 DU each, will constitute ARCA $\rightarrow \sim \text{km}^3$ instrumented volume

Unprecedented reconstruction performances ~0.1° for tracks, ~2° for showers

13/12/2018

Then, what to search for?

Soft spectra from γ obs. \rightarrow lowE threshold analysis

ANTARES point source searches

2007-2015 ANTARES dataset, all neutrino flavours 9yr data set, 7622 tracks + 180 showers 1°x 1° grid search over the full sky, no source assumption Search for time-integrated clustering of neutrino events

Phys.Rev. D 96 no.8:

ANTARES point source searches

Max. likelihood search for clustering of neutrinos around:

TeV gamma-sources (106) IceCube tracks (13) GC region

Intermezzo: TXS0506+056

+ time dependent search for space-time clustering with the IC neutrino flare – no excess observed

ANTARES Galactic Centre region

10

1

1600

1400

1200 count

1000

600

400

200

-2

Excess 800

ANTARES + IceCube (Ep.1 point-like sources)

Limits and sensitivity for individual analyses (ANTARES and IceCube) and combination Analysis being updated now for new data samples

ANTARES & KM3NeT

Astrophys. J. 823: 65, 2016

ANTARES + IceCube (Ep.1 point-like sources)

ANTARES relevant for negative declinations and low-energy emissions

 $\gamma = 2.0$

13/12/2018

KM3NeT/ARCA perspectives

γ and υ : CR propagation in the Milky Way

Neutrinos carry direct information on CR propagation. e.g.:

- Non-homogeneous diffusion can enhance γ and ν emission

- Molecular clouds/dense environments boost γ and ν fluxes

FERMI-LAT map

*Astrophys.J., 750: 3, 2012 **APJLett. 815: L25, 2015

v models from GCR and γ

17/23

Phys. Rev. D **96**, 062001 (2017)

ANTARES Galactic Plane

ANTARES + IceCube (Ep.2 - Galactic Plane)

ANTARES & KM3NeT

APJ Lett. **868**: L20, 2018

KM3NeT@ICRC2017

KM3NeT GP sensitivities

More, extended - Fermi Bubbles

Combined tracks + cascades Search for HE events (signal ~ E^{-2.2})

No significant excess observed (~1.5 σ) over 9 yrs o data taking

13/12/2018

*as from Andersen, Kachelrieß, Semikoz APJLett **861**,2: L19 (2018)

More, extended - Local Bubble&Loop1

Matter density + magnetic field inhomogeneites

→ enchance neutrino production?

Large extension on our sky \rightarrow contribute to the all-sky flux, though not easily detectable

60° radius, centered just above the GC/GP

ANTARES sensitivities based on 10yrs of data

~sensitivity 3-6 x Φ_{model}

Conclusions and outlook

- Large amount of searches for neutrinos in our Galaxy
- Northern Hemisphere telescopes do play their part
- Current generation is now starting to touch the sensitivity levels required to study GCR through $\boldsymbol{\nu}$
- KM3NeT/ARCA will aim at discoveries