(Towards) a New Global Model of the Galactic Magnetic Field

M. Unger (KIT)

in collaboration with G.R. Farrar (NYU)

JF12 visualization by Farrar & Sandstrom

Observational Tracers of the Galactic Magnetic Field

Observational Tracers of the Galactic Magnetic Field

- coherent field B
- random field b
- rotation measure: $RM \propto \int n_e B_{\parallel} dl$
- Stokes parameters: $Q/U \propto \int B_{\perp}^2 n_{\rm cre} \, \mathrm{d}l^*$
- ► proj. magnetic field angle: $\langle \psi_{\text{mag}} \rangle = \frac{1}{2} \operatorname{atan} \left(\frac{U}{Q} \right) + \pi/2$
- polarized intensity: $PI^2 = Q^2 + U^2$
- total intensity:

$$\begin{split} \mathrm{I} &= \textit{I}_{\mathrm{coh}} + \textit{I}_{\mathrm{rand}}, \\ \textit{I}_{\mathrm{coh}} &\propto \textit{B}_{\perp}^{2}, \textit{I}_{\mathrm{rand}} \propto \textit{b}^{2*} \end{split}$$

Fitting GMF Models

Rotation Measures of Extragalactic Radio Sources

Rotation Measures of Extragalactic Radio Sources

Synchrotron Emission WMAPbase9yr

Q

U

PI

PlanckDR2

AQ [µK] at 30 GH

AU [µK] at 30 GH

ΔP [µK] at 30 G

atio at 30 GH2

Synchrotron Emission

Component Separation:

WMAPbase9yr PlanckDR2 RMS brightness temperature (μ K) 100 143 217 353 545 857 70 nal dust Ka w Antenna Temperature (µK, rms) 10² CMB Anisotropy 100 101 10 E 10-0 10-1 20 100 200 10 30 100 300 40 60 80 Frequency (GHz) Frequency (GHz)

destriped and mono/dipole subtracted Haslam from Remazeilles+14

1000

Fitting GMF Models

Jansson&Farrar Global Magnetic Field Model (JF12)

three divergence-free components:

- disk field, ($h \lesssim 0.4$ kpc)
- toroidal halo field ($h_{\rm scale} \sim 5.3 \ \rm kpc$)
- "X-field" (halo)
- regular field^a: 21 parameters
- random field^b: 13 parameters
- striation: 1 parameter
- CR electron norm.: 1 parameter

^aR. Jansson & G.F. Farrar, ApJ **757** (2012) 14 ^bR. Jansson & G.F. Farrar, ApJ **761** (2012) L11

Disk Field

M51, R. Beck (MPIfR), A. Fletcher (Newcastle Univ)

E. Freeland, www.astro.wisc.edu

10 of 27

Disk Field

 $\mathrm{RM} \propto \int_d^0 n_e(l) \, B_{\parallel} \, \mathrm{d}l$

background: NE2001 thermal electrons, squares: extragalactic RMs, circles: pulsar RMs 11 of 27

Improved Disk Field: Smooth, Divergence-Free Spiral

color scale: B field in μ G

best-fit pitch angle: $(13.4 \pm 0.7)^{\circ}$ (JF12: fixed to 11.5°)

Toroidal Field

RM, no toroidal Field

RM, $B_{\varphi}^{\mathrm{N}}=-B_{\varphi}^{\mathrm{S}}=$ 0.5 $\mu\mathrm{G}$

RM, $B_{\varphi}^{\mathrm{N}}=-B_{\varphi}^{\mathrm{S}}=$ 1.0 $\mu\mathrm{G}$

RM, $B_{\varphi}^{\mathrm{N}} = -B_{\varphi}^{\mathrm{S}} = 1.5 \ \mu \mathrm{G}$

X-field

NGC891, M. Krause MPIfR

NGC 4631, M. Krause, arXiv:1401.1317

 $Q/U/\psi_{mag}$ $\theta_X = 49^{\circ}$

 $B_X = 0\mu G$:

 $B_X = 2\mu G$:

 $B_X = 4\mu G$:

20 15 10 5°0 Purk

-10

-15

20 15 10 n [Jirk]

-10

-15 -20

-15 -20

20 15 10 5 0 -5 -10 -15

16 of 27

Twisted X-Field

- evolve poloidal field via induction equation
- radial and vertical shear of Galactic rotation generates toroidal field

Fitting GMF Models

Thermal Electrons

- origin: ionization of ISM by OB stars
- clumps in HII regions, diffuse component
- emission measure EM $\propto \int_0^\infty n_e^2(l) dl$ from H α map:

Thermal Electrons

Modeling of thermal electrons mainly based on dispersion measure of Galactic pulsars with distance measurements

 $\mathrm{DM} = \int_0^D n_e(l) \,\mathrm{d}l$

Thermal Electron Models

Yao, Manchester & Wang, ApJ 835 (2017) 32, J. Cordes&T. Lazio, arXiv:0207156 and 0301598

Thermal Electrons, *B* and *b*

$$\mathbb{RM}' = \mathbb{RM} \left(1 + \frac{2}{3} \times \frac{5^2}{B^2 + 5^2} \right) \quad (Beck+03)$$

Fitting GMF Models

Cosmic-Ray Electrons

- origin: acceleration in supernova remnants
- data: cosmic-ray electron spectra at Earth, B/C, Be
- uncertainties: source distribution, propgation parameters, local environment
- diffusion and cooling in Galactic magnetic field

Y. Genolini et al, A&A. 580 (2015) A9

Q. Yuana et al, arXiv:1701.06149

Cosmic-Ray Electron Models

T. Jaffe, private communication

M. Werner et al, Astropart. Phys. 64 (2015) 18

Improved Cosmic-Ray Electron Modeling (UF in prep.)

Fit Variations (coherent)

id	disk	toroidal	poloidal	NE	ncre	QU	misc	χ^2/ndf	_
Parametric models									
а	JF	JF	JF	01	GP_JF	W7	-	1.10	
b	JF	JF	FTC	01	GP_JF	W7	-	1.09	
С	JF	JFsym	FTC	01	GP_JF	W7	-	1.11	
d	JF	JFsym	FTC	01	GP_JF	W7	warp	1.11	
е	UF	JFsym	FTC	01	GP_JF	W7	-	1.09	
f	UF	UF	UFa	01	GP_JF	W7	-	1.14	
g	UF	UF	UFb	01	GP_JF	W7	-	1.09	
Synchrotron products									
h	JF	JFsym	FTC	01	GP JF	W9base	-	1.22	
i	JF	JFsym	FTC	01	GP_JF	W9sdc	-	1.24	
i	JF	JFsym	FTC	01	GP_JF	W9fs	-	1.11	
k	JF	JFsym	FTC	01	GP_JF	W9fss	-	1.22	
Ι	JF	JFsym	FTC	01	GP_JF	P15	-	0.78	
Thermal electrons									
m	JF	JFsym	FTC	16	GP JF	W7	-	1.21	
n	UF	JFsym	FTC	16	GP_JF	W7	-	1.14	
0	JF	JF	FTC	01	GP_JF	W7	$\kappa = -1$	1.05	
р	JF	JF	FTC	01	GP JF	W7	$\kappa = +1$	1.05	
q	JF	JFsym	FTC	01	GP_JF	W7	HIM	1.12	Lood a
Cosmic-ray electrons									
r	JF	JFsym	FTC	01	013a	W7	-	1.13	1
s	JF	JFsym	FTC	01	O13b	W7	-	1.12	1
t	JF	JFsym	FTC	01	S10	W7	-	1.13	

Effect on Back-tracking of UHECRs, R = E/Z = 20 EV

-90°

Summary

Summary

