

Observations ______ of the (turbulent) Galactic magnetic field

Katia FERRIÈRE

Institut de Recherche en Astrophysique et Planétologie, Observatoire Midi-Pyrénées, Toulouse, France

Searching for the sources of Galactic cosmic rays APC, Paris – December 11-14, 2018

イロト イボト イヨト イヨ

Outline

Classical methods

- Dust polarization
- Faraday rotation
- Synchrotron emission

- 4 周 ト 4 ヨ ト 4 ヨ

Dust polarization Faraday rotation Synchrotron emission

Outline

Classical methods

- Dust polarization
- Faraday rotation
- Synchrotron emission

Paraday tomography

イロト イヨト イヨト イヨト

Dust polarization Faraday rotation Synchrotron emission

In a nutshell

• Polarization of starlight & dust thermal emission

Due to *dust grains* \rightarrow general (dusty) ISM $\bowtie \vec{B}_{\perp}$ (orientation only)

Zeeman splitting

Molecular & atomic *spectral lines* \rightarrow neutral regions \mathbb{B}_{\parallel} (strength & sign)

Faraday rotation

Caused by thermal electrons \rightarrow ionized regions \mathbb{B}_{\parallel} (strength & sign)

• Synchrotron emission

Produced by *CR electrons* \rightarrow general (CR-filled) ISM $\overrightarrow{B}_{\perp}$ (strength & orientation)

Image: A matching of the second se

Dust polarization Faraday rotation Synchrotron emission

Outline

Classical methods

- Dust polarization
- Faraday rotation
- Synchrotron emission

Paraday tomography

イロト イヨト イヨト イヨト

Dust polarization Faraday rotation Synchrotron emission

Polarization direction

- Dust-extinct starlight (optical) is polarized $\|\vec{B}_{\perp}\|$
- Dust thermal emission (infrared) is polarized $\perp \vec{B}_{\perp}$

Figure Credit: Philippe Terral

< ロト < 同ト < ヨト < ヨト

Dust polarization Faraday rotation Synchrotron emission

Polarization fraction

- Dust-extinct starlight : $p \equiv \frac{P}{I} = \tau p_0 \cos^2 \gamma$
- Dust thermal emission : $p \equiv \frac{P}{I} = p_0 \cos^2 \gamma$

 $\Rightarrow p_0 = p_{\max} F_{\text{align}} F_{\delta B}$

イロト イヨト イヨト イヨト

э

Dust polarization Faraday rotation Synchrotron emission

Dust polarization

Altogether

- Polarization direction gives orientation of \vec{B} in POS
- Polarization fraction gives inclination of \vec{B} to POS (for ideal conditions)

イロト イボト イヨト イヨト

Dust polarization Faraday rotation Synchrotron emission

Polarization of starlight

\vec{B}_{\perp} segtors from 8 662 stars

Image: Second stateImage: Image: Second stateImage: Second state \vec{B}_{ord} is nearly azimuthal $(p \simeq -7^{\circ})$ Image: Image: Second state \vec{B}_{ord} has vertical component $\vec{E} = -7^{\circ}$ Image: Second state \vec{B}_{ord} has vertical component $\vec{E} = -7^{\circ}$ Image: Second state \vec{B}_{ord} has vertical component $\vec{E} = -7^{\circ}$ Image: Second state \vec{B}_{ord} has vertical component $\vec{E} = -7^{\circ}$ Image: Second state \vec{B}_{ord} has vertical component $\vec{E} = -7^{\circ}$ Image: Second state \vec{B}_{ord} has vertical component $\vec{E} = -7^{\circ}$ Image: Second state \vec{B}_{ord} has vertical component $\vec{E} = -7^{\circ}$ Image: Second state \vec{B}_{ord} has vertical component $\vec{E} = -7^{\circ}$ Image: Second state \vec{B}_{ord} has vertical component $\vec{E} = -7^{\circ}$ Image: Second state \vec{B}_{ord} has vertical component $\vec{E} = -7^{\circ}$ Image: Second state \vec{B}_{ord} has vertical component $\vec{E} = -7^{\circ}$ Image: Second state \vec{B}_{ord} has vertical component $\vec{E} = -7^{\circ}$ Image: Second state \vec{B}_{ord} has vertical component $\vec{E} = -7^{\circ}$ Image: Second state \vec{B}_{ord} has vertical component $\vec{E} = -7^{\circ}$ Image: Second state \vec{B}_{ord} has vertical component $\vec{E} = -7^{\circ}$ Image: Second state \vec{B}_{ord} has vertical component $\vec{E} = -7^{\circ}$ Image: Second state \vec{B}_{ord} has vertical component $\vec{E} = -7^{\circ}$ Image: Second state \vec{B}_{ord} has vertical component<

Dust polarization Faraday rotation Synchrotron emission

Polarization of dust thermal emission

Planck collaboration (2015)

- \square In disk : \vec{B}_{ord} is horizontal
 - In halo : \vec{B}_{ord} has vertical component

イロト イボト イヨト イヨ

Dust polarization Faraday rotation Synchrotron emission

Polarization of dust thermal emission

Solution of \vec{B}_{ord} to POS : $\cos^2 \gamma$

Dust polarization Faraday rotation Synchrotron emission

Polarization of dust thermal emission

Planck collaboration (2015)

s Anti-correlation between
$$p = \frac{P}{I}$$
 & $S = \sqrt{\langle (\Delta \psi)^2 \rangle}$

イロト イヨト イヨト イヨト

Dust polarization Faraday rotation Synchrotron emission

Outline

Classical methods

- Dust polarization
- Faraday rotation
- Synchrotron emission

Paraday tomography

イロト イヨト イヨト イヨト

Dust polarization Faraday rotation Synchrotron emission

Rotation measure

$$\Delta \theta = \mathbf{RM} \lambda^2$$
 where $\mathbf{RM} = C \int n_e \mathbf{B}_{\parallel} dl$

 \square *B* in ionized regions

Figure Credit: Philippe Terral

ヘロト ヘ部ト ヘヨト ヘヨト

Dust polarization Faraday rotation Synchrotron emission

Rotation measure

$$\Delta \theta = \mathbf{RM} \lambda^2$$
 where $\mathbf{RM} = C \int n_e \mathbf{B}_{\parallel} dl$

 \mathbb{R} **B** in ionized regions

RMs of pulsars & EGRSs with $|b| < 8^{\circ}$

Han (2009)

RMs of EGRSs [NVSS ($\delta > -40^{\circ}$) + S-PASS ($\delta < 0^{\circ}$)]

ヘロト ヘ部ト ヘヨト ヘヨト

Figure Credit: Dominic Schnitzeler

Dust polarization Faraday rotation Synchrotron emission

Regular magnetic field

In ionized regions

- - \vec{B} has regular & fluctuating components Near the Sun : $B_{reg} \simeq 1.5 \mu G$ & $B_{fluct} \sim 5 \mu G$
 - In disk : \vec{B}_{reg} is horizontal & mostly azimuthal Near the Sun : \vec{B}_{reg} is CW $(p \simeq -8^{\circ})$ \vec{B}_{reg} reverses direction with decreasing radius \vec{B}_{reg} is symmetric in z
 - In halo : \vec{B}_{reg} has horizontal & vertical components

 \vec{B}_{reg} is CCW at z > 0 & CW at z < 0

 \rightarrow anti-symmetric in z

 $(B_{\rm reg})_z \simeq +0.3 \,\mu {\rm G}$ toward SGP & $\simeq 0 \,\mu {\rm G}$ (?) toward NGP

 \rightarrow possibly consistent with sym disk & anti-sym halo

Dust polarization Faraday rotation Synchrotron emission

Regular magnetic field

Model of the large-scale magnetic field in the Galactic disk

van Eck et al. (2011)

ヘロト ヘ部ト ヘヨト ヘヨト

æ

Dust polarization Faraday rotation Synchrotron emission

Power spectra: from extragalactic RMs

Combine measured RM = $C \int n_e B_{\parallel} ds$ & EM = $\int n_e^2 ds$ to derive power spectra of δn_e and δB separately

(Minter & Spangler 1996)

For irregularly spaced sources,

use structure functions $D_{\phi}(\vec{r}_1 - \vec{r}_2) = \left\langle \left[\delta \phi(\vec{r}_1) - \delta \phi(\vec{r}_2) \right]^2 \right\rangle$ $D_{\phi}(\delta \vec{r}) \rightarrow P_{\phi}(\vec{k})$

Dust polarization Faraday rotation Synchrotron emission

Power spectra: from extragalactic RMs

Combine measured RM = $C \int n_e B_{\parallel} ds$ & EM = $\int n_e^2 ds$ to derive power spectra of δn_e and δB separately

(Minter & Spangler 1996)

Dust polarization Faraday rotation Synchrotron emission

Power spectra: from extragalactic RMs

Combine measured $RM = C \int n_e B_{\parallel} ds$ & $EM = \int n_e^2 ds$ to derive power spectra of δn_e and δB separately (Minte

(Minter & Spangler 1996)

$$\begin{split} D_{\rm RM} &\propto \,\delta\theta^{\frac{5}{3}} &\& D_{\rm EM} \,\propto \,\delta\theta^{\frac{5}{3}} & \text{for } \delta\theta < 0.07^{\circ} \\ D_{\rm RM} \,\propto \,\delta\theta^{\frac{2}{3}} &\& D_{\rm EM} \,\propto \,\delta\theta^{\frac{2}{3}} & \text{for } \delta\theta > 0.07^{\circ} \end{split}$$

 $\Rightarrow E_n(k) \propto k^{-\frac{5}{3}} \& E_B(k) \propto k^{-\frac{5}{3}} \text{ for } \ell < 3.6 \text{ pc}$ (assuming L = 2.9 kpc) $E_n(k) \propto k^{-\frac{2}{3}} \& E_B(k) \propto k^{-\frac{2}{3}} \text{ for } \ell > 3.6 \text{ pc}$ $\ell < (70 - 100) \text{ pc}$

- True MHD turbulence
 - 3D Kolmogorov for ℓ < 3.6 pc & 2D for 3.6 pc < ℓ < (70 100) pc
 - Possibly turbulent sheets of thickness $\sim 3.6 \text{ pc}$
 - Spectral break at $~\ell\simeq 3.6~pc~$ could explain knee in CR spectrum

 $(\ell \simeq 3.6 \text{ pc corresponds to } E_{\perp} \simeq 2 \times 10^7 \text{ GeV if } B \simeq 5 \,\mu\text{G})$

Dust polarization Faraday rotation Synchrotron emission

Power spectra: from extragalactic RMs

Outer scale of RM power spectrum

In interarm regions

- Kolmogorov for $\,\ell \lesssim 1 \ pc$
- Flatter for $\ell \sim (1 100) \text{ pc}$

 $\Rightarrow \ell_{out} \sim 100 \text{ pc}$

🖙 In spiral arms

- Kolmogorov for $\,\ell \lesssim 1 \; pc$
- Flat for $\ell\gtrsim 1~pc$

< ロト < 同ト < ヨト < ヨト

 $\Rightarrow \ell_{out} \sim a \text{ few pc}$

Dust polarization Faraday rotation Synchrotron emission

Power spectra: from pulsar RMs

Combine measured RM = $C \int_0^L n_e B_{\parallel} ds$ & DM = $\int_0^L n_e ds$ & L to derive power spectrum of δB at larges scales (Han et al. 2004)

Katia FERRIÈRE Observations of the (turbulent) Galactic magnetic field

Dust polarization Faraday rotation Synchrotron emission

Fluctuating magnetic field

Strength of fluctuating magnetic field

- * From extragalactic RMs
 - $\delta B_{\rm rms} \sim 1 \,\mu {
 m G}$ for $\ell < 3.6 \,{
 m pc}$ (Kolmogorov portion)
 - $-\delta B_{\rm rms} \gtrsim 1.3 \,\mu{
 m G}$
- * From Galactic pulsar RMs
 - $\delta B_{\rm rms} \sim 6 \,\mu {\rm G}$

(Minter & Spangler 1996)

・ロト ・ 四ト ・ ヨト ・ ヨト ・

(Gaensler et al. 2001)

(Han et al. 2004)

3

Katia FERRIÈRE Observations of the (turbulent) Galactic magnetic field

Dust polarization Faraday rotation Synchrotron emission

Prospects for RM grids

- Pulsars with measured DMs & RMs
 - * Currently : 1 133

(ATNF pulsar catalogue, version 1.58, Manchester et al. 2005+)

- * Expected with SKA1 :
 - Total number : $\sim 18\,000$
 - Density in Galactic plane : ~ 6 deg⁻²

(Keane et al. 2015)

• Extragalactic sources with measured RMs

- * Currently : $\simeq 42000$
 - (Oppermann et al. 2015)
- * Expected with SKA1:
 - Total number : ~ $(1-4) \times 10^7$
 - Average density : ~ (300 1 000) deg^{-2}

(Haverkorn et al. 2015)

イロト イボト イヨト イヨト

Dust polarization Faraday rotation Synchrotron emission

Outline

Classical methods

- Dust polarization
- Faraday rotation
- Synchrotron emission

イロト イヨト イヨト イヨト

Synchrotron emission

Total & polarized intensities

$$\mathcal{E} = f(\alpha) \, n_{\text{CRe}} \, \mathbf{B}_{\perp}^{\alpha+1} \, \nu^{-\alpha} \quad \mathbf{\&} \quad \mathbf{\vec{\mathcal{E}}} \perp \mathbf{\vec{B}}_{\perp}$$

- Total intensity :
$$I = \int_0^L \mathcal{E} \, ds$$

 \mathbb{B}_{\perp} (strength only)

- Polarized intensity : $\vec{P} = \int_{0}^{L} \vec{\mathcal{E}} \, ds$ (strength & orientation) (strength & orientation)

Dust polarization Faraday rotation Synchrotron emission

Total & polarized intensities

$$\mathcal{E} = f(\alpha) \, n_{\text{CRe}} \, \mathbf{B}_{\perp}^{\alpha+1} \, \nu^{-\alpha} \quad \& \quad \vec{\mathcal{E}} \perp \vec{\mathbf{B}}_{\perp}$$

- Total intensity :
$$I = \int_0^L \mathcal{E} \, ds$$

- Polarized intensity :
$$\vec{P} = \int_0^L \vec{\mathcal{E}} \, ds$$

$$\mathbb{B}_{\perp}$$
 (strength only)

 \mathbb{R} $(\vec{B}_{ord})_{\perp}$ (strength & orientation)

TI at 1.4 GHz (25m Stockert + 30m Villa Elisa)

PI at 1.4 GHz (26m DRAO + 30m Villa Elisa)

Dust polarization Faraday rotation Synchrotron emission

Total & polarized intensities

$$\mathcal{E} = f(\alpha) \, n_{\text{CRe}} \, \mathbf{B}_{\perp}^{\alpha+1} \, \nu^{-\alpha} \quad \& \quad \vec{\mathcal{E}} \perp \vec{\mathbf{B}}_{\perp}$$

- Total intensity :
$$I = \int_0^L \mathcal{E} \, ds$$

- Polarized intensity :
$$\vec{P} = \int_0^L \vec{\mathcal{E}} \, ds$$

$$\mathbb{B}_{\perp}$$
 (strength only)

 \mathbb{R} $(\vec{B}_{ord})_{\perp}$ (strength & orientation)

TI at 1.4 GHz (25m Stockert + 30m Villa Elisa)

PI & \vec{B}_{\perp} segtors at 23 GHz (WMAP)

Dust polarization Faraday rotation Synchrotron emission

Ordered magnetic field

In general (CR-filled) ISM

- \mathbf{w} \vec{B} has ordered & fluctuating components
 - Near the Sun : $B_{\text{ord}} \sim 3 \,\mu\text{G} \& B_{\text{tot}} \sim 5 \,\mu\text{G}$
 - Global spatial distribution : $L_{\rm B} \sim 12 \ \rm kpc \ \& \ H_{\rm B} \sim 4.5 \ \rm kpc$
 - In disk : \vec{B}_{ord} is horizontal
 - In halo : \vec{B}_{ord} has horizontal & vertical components

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Dust polarization Faraday rotation Synchrotron emission

Power spectrum

Angular power spectrum of synchrotron TI toward Fan region

イロト イボト イヨト イヨ

Dust polarization Faraday rotation Synchrotron emission

Synchrotron intensity gradients

Synchrotron intensity gradients & \vec{B}_{\perp} segtors (Planck)

Lazarian et al. (2017)

イロト イヨト イヨト イヨ

Dust polarization Faraday rotation Synchrotron emission

Synchrotron polarization gradients

TI & PI at 1.4 GHz (ATCA)

Gaensler et al. (2011)

$$\vec{P} = Q + i U$$

イロト イヨト イヨト イヨ

Dust polarization Faraday rotation Synchrotron emission

Synchrotron polarization gradients

 $|\nabla \vec{P}|$ at 1.4 GHz (ATCA)

Comparison with simulations

Interstellar turbulence is subsonic or transsonic

(Burkhart et al. 2012)

Outline

- Dust polarization
- Faraday rotation
- Synchrotron emission

< ロト < 同ト < ヨト < ヨト

General concept

Underlying processes

- Galactic synchrotron emission : linearly polarized
- Faraday rotation : λ -dependent

General idea

- Measure synchrotron polarized intensity at many different $\boldsymbol{\lambda}$
- Convert λ -dependence into LOS-dependence

Output

Faraday cube = 3D cube of synchrotron polarized emission as $fc(\alpha, \delta, \Phi)$

< ロト < 同ト < ヨト < ヨト

General method

• Faraday rotation of background source

 $\Theta = \mathbf{RM} \lambda^2$ with $\mathbf{RM} = C \int_0^L n_e B_{\parallel} ds$ (rotation measure)

• Faraday rotation of Galactic synchrotron emission

Synchrotron emission & Faraday rotation are *spatially mixed* $\vec{P}(\lambda^2) = \int \vec{F}(\Phi) e^{2i\Phi\lambda^2} d\Phi$ with $\Phi(z) = C \int_0^z n_e B_{\parallel} ds$ (Faraday depth)

see Fourier transform of polarized intensity : $\vec{P}(\lambda^2) \rightarrow \vec{F}(\Phi)$

Figure Credit: Marijke Haverkorn

Faraday spectrum

Figure Credit: Marta Alves

æ

イロト イヨト イヨト イヨト

Katia FERRIÈRE Observations of the (turbulent) Galactic magnetic field

Faraday cube

For given sky area

- Derive Faraday spectrum, $\vec{F}(\Phi)$, in many directions (α, δ)
- Combine all derived Faraday spectra into Faraday cube = 3D cube of $\vec{F}(\alpha, \delta, \Phi)$

Faraday cube toward Fan region, obtained with LOFAR (van Eck et al. 2017)

3 slices at $\Phi_1 = -2.0 \text{ rad } m^{-2}$ $\Phi_2 = -1.5 \text{ rad } m^{-2}$ $\Phi_3 = -1.0 \text{ rad } m^{-2}$

< ロト < 同ト < ヨト < ヨト

Katia FERRIÈRE Observations of the (turbulent) Galactic magnetic field

Extracted information

- From Faraday space to physical space
 - Uncover synchrotron-emitting & Faraday-rotating features in Faraday cube
 - Identify these features with interstellar matter structures
- For synchrotron-emitting regions $\int \vec{F}(\Phi) \, d\Phi \quad \Rightarrow \quad \vec{B}_{\perp}$
- For Faraday-rotating regions

 $\Delta \Phi \Rightarrow B_{\parallel}$

・ロト ・ 日 ・ ・ ヨ ・ ・

Example of a nearby magnetized bubble

Polarized intensity at 3 different Faraday depths

Example of a nearby magnetized bubble

Polarized intensity at 3 different Faraday depths

