Survey of our Local Environment, and Implications for Local Cosmic Rays

Víkram Dwarkadas

University of Chicago

(With Thanks to Priscilla Frisch, Bob Binns and Marty Israel) Based partly on work presented in "Effect of Supernovae on the Local Interstellar material", Frisch & Dwarkadas, arXiv:1801.06223

What is a Bubble, and how is it formed? Formation of W-R Bubble

DENSITY – log scale (see also Dwarkadas & Rosenberg 2013).

O-RSG-WR

Note: Interior density low throughout, density of shell ~10⁴-10⁵ times larger.

Simulation of wind bubble formed around 40 solar mass star throughout its evolution.

Calculated using the ionizationgasdynamics code AVATAR (Dwarkadas & Rosenberg 2013).

The Local Bubble

- Feature now known as the "Local Bubble" was originally defined by deficit of starlight reddening by interstellar dust for stars within about 70 pc. Hipparcos catalog provides high-precision astrometric and photometric data that are used to map out the distribution of local interstellar dust (right).
- The deficit of 'local bubble' interstellar dust (and gas) extends beyond 50 pc from the galactic plane.

The cumulative extinction of interstellar dust is shown over spatial scales of $\sim 400 \text{ pc}$

So why is it Local Bubble?

- Presence of hot gas with temperatures $\sim 10^{6}$ K
- The discovery of the soft X-ray background (SXRB) motivated measurements of the X-ray spectra at low energies, < 0.25 keV, where a flat X-ray spectrum was found that limited the amount of possible interstellar absorption of the X-ray photons
- The resulting "displacement model" required the X-rays to be produced inside a cavity in the neutral gas.
- Hot gas in a low density cavity _____ Bubble
- Some suggestions that SNe needed to produce hot gas. Multiple SNe can create a network of tunnels and cavities such as Local Bubble.
- However, others (R. Shelton et al.) have suggested that charge exchange between solar wind and neutral interstellar atoms can mostly, or even fully, explain the hot gas, no local stellar source needed.

The circles show the three superbubble shells in Sco OB2, (Upper Centauraus Lupus, lower Centaurus Crux, Upper Scorpius) the Antlia SN remnant, the Ori-Eri superbubble, and the S1 shell.

Recent work (Pecaut & Mamjek, 2016) suggests that the three shells in Sco-Cen were not coeval, but instead represent a multitude of smaller star formation episodes.

Galactic Loops

Top: Haslam 408 MHz map is shown with circles indicating loops from Berkhuijsen et al. (<u>1971</u>). These ridges of enhanced Galactic radio emission are seen across the sky at low radio frequencies. The North Polar Spur ("Loop I") and the Cetus arc ("Loop II") are examples of these features, which have been described as the remnants of individual supernovae, or of correlated supernovae outbursts that produce blowouts, or as helical patterns that follow the local magnetic fields projecting out of the plane. Four such loops can be seen in the Haslam 408 MHz radio map and the *WMAP* map. Note that the color stretch is logarithmic in temperature. *Bottom: WMAP* K-band polarization map with the same loops superimposed. Note that the highly polarized southern feature is close to the North Polar Spur circle and may be related to the same physical structure. Note also that the polarization direction is perpendicular to the main ridge arc of the North Polar Spur, indicating a tangential magnetic field. This is also seen in the southern feature. Whether or not they are physically related remains

Nearby clusters of O–B2.5 massive stars that are progenitors of core-collapse Type II and Type Ib/c supernovae form a thin planar ring-like structure around the Sun known as "Gould's Belt". Gould's Belt is part of a large-scale warp in the distribution of young stars in the galactic plane.

The traditional configuration of Gould's Belt as an inclined plane defined partly by the Sco OB2 and Orion OB1 associations is shown in the figure (from Grenier 2004). Gould's belt is tilted by an angle of $\sim 17.2^{\circ}$ with respect to the galactic plane,

OB associations in our neighborhood

12/12/18

D'Files/ACE'Papers-Meetings/ACE Science Team Mtg_11_2015/OB_assoc_map_1000pc

So why is all this important for Local Cosmic Rays?

²²Ne/²⁰Ne

Main source of high ²²Ne/²⁰Ne is Wolf-Rayet stars. To get such a high ratio, we must be accelerating the material in W-R star winds – therefore must be due to massive stars.

²²Ne/²⁰Ne

Higdon & Lingenfelter 2003

Main source of ²²Ne is W-R stars above about 25 solar masses

The Cosmic Ray Isotope Spectrometer (CRIS) on ACE

- Launched in August, 1997
- Still collecting excellent quality data

ACE-CRIS Iron & Cobalt Isotope Distributions

- With 16.8 years of data, CRIS detects 15 60 Fe and 2.95 x 10⁵ 56 Fe.
- 15 ⁶⁰Fe events have mean mass estimate of A=60.04 and a standard deviation from mean of 0.28 ± 0.05 amu, consistent with 0.245 ± 0.001 amu for ⁵⁶Fe.

- The ⁶⁰Fe observed are almost all primary, not products of interstellar fragmentation
- First observation of a primary cosmic-ray clock
- Strongest argument that this is not a tail of the ⁵⁸Fe peak can be seen by looking at upper edge of ⁵⁹Co distribution. Only 1 event near ⁶¹Co, but for ⁶⁰Fe have 15.

Production & Other Observations of ⁶⁰Fe

- ⁶⁰Fe is radioactive and is synthesized primarily in core-collapse SNe by neutron capture
 - β^- decay, 2.62 Myr half-life

Post-SN

6

Timmes et al., ApJ, 449, 204, 1995

- Emits γ -rays at 1.173 and 1.332 MeV ٠
- Almost all the ⁶⁰Fe is in SN ejecta. SNe are the ONLY producers of ⁶⁰Fe.
- Observed in diffuse emission of γ -rays by INTEGRAL (Wang et al.; Diehl 2013) and RHESSI (Smith 2004)

⁶⁰Fe Production 25 Mo

Pre-SN

8

Interior Mass

10

12

log Mass Fraction

-5

-6

-7

Pre-S

⁶⁰Fe/⁵⁶Fe ratio at Earth (top of detector)

- Observe 15⁶⁰Fe nuclei and 2.95x10⁵⁵⁶Fe nuclei. Estimate that
 - ~1 of these ⁶⁰Fe is the result of interstellar fragmentation of heavier nuclei, probably from ⁶²Ni or ⁶⁴Ni
 - ~1 \pm ~1 could be background (possibly from interactions in the CRIS instrument above the Si stack).
- So the <u>measured ratio</u> is
- $\frac{60\text{Fe}/56\text{Fe}}{13 \pm 1 \pm 3.9}/2.95 \times 10^5 = (4.4 \pm 1.7) \times 10^{-5}$
- (The first \pm is uncertainty of the background and the second \pm is $\sqrt{15}$.)
- Correcting for interactions in the instrument and differing energy ranges yields $\frac{60\text{Fe}/56\text{Fe}}{1.6 \pm 1.7} \times 10^{-5}$ at top of Detector.
- Since the ⁶⁰Fe half-life is 2.6 Myr, this implies that
 - CR acceleration occurs within several Myr of nucleosynthesis
 - Source material has a recently synthesized component

Observations of ⁶⁰Fe

- Wallner et al. (2016) Nature, **532**, 69; accelerator mass spectroscopy
 - 120 deep sea samples from ferro-manganese deposits in all major oceans all contain
 ⁶⁰Fe at levels of ⁶⁰Fe/Fe=few x 10⁻¹⁵
 - ⁶⁰Fe Interstellar influxes onto earth via dust grains found for time periods 1.5-3.2 Myr and 6.5-8.7 Myr ago
 - Argue that burst of supernovae in Sun's vicinity delivered the nuclei to Earth

- Also see Breitschwerdt et al. Nature (2016) **532**, 73
 - > Model the Sco-Cen association which generated the local bubble
- Earlier papers Knie et al., PRL 93, 171103, 2004 & Fitoussi et al. PRL 101, 121101, 2008

Observations of ⁶⁰Fe on the Moon

Lunar Cores— Fimiani et al. analyzed lunar cores. Found relatively high concentrations of ⁶⁰Fe suggesting the arrival of SN debris on the moon 1.7-2.6 Myr ago. (PRL 116, 151104, 2016)

Distance Estimate to Source

- Mean distance to the sources contributing to cosmic rays at Earth using a diffusive propagation model.
 - CRs originate in a volume surrounding the Sun with radius L= $(D\gamma\tau)^{0.5}$, where D is the diffusion coefficient, γ is the Lorentz factor, and τ is the effective cosmic ray lifetime.
 - Assuming D=3.5 × 10²⁸ cm²/s, and γ 's & τ 's for ⁵⁶Fe and ⁶⁰Fe, we obtain
 - L₅₆ = 790 pc
 - L₆₀ = 620 pc
 - Sources are nearby

Minimum Time between nucleosynthesis and acceleration--⁵⁹Ni

- How long after nucleosynthesis are GCR nuclei accelerated? Does a SN shock accelerate nuclei synthesized in that SN?
 - ⁵⁹Ni decays only by k-capture.

 $^{59}Ni + e^- \rightarrow ^{59}Co + v$

- Half-life in the laboratory is 76,000 years.
- At cosmic-ray energies it is stripped of electrons and so is stable.
- If GCR are accelerated by the same SN in which the nuclei are synthesized, expect to see ⁵⁹Ni in the GCR.
- GCR acceleration occurs >~100,000 years after synthesis. So GCR source material is not accelerated in the same supernova that synthesizes it!

Wiedenbeck, et al., ApJL, 523, L51 (1999)

However, Neronov and Meynet (2016): recent predictions of ⁵⁹Ni yield result in low ⁵⁹Ni relative to decay product ⁵⁹Co, consistent with upper bound of ⁵⁹Ni in cosmic rays. Removes necessity of decay of ⁵⁹Ni time interval between explosion and acceleration.

.38,***	Here's and	F 5 84	E 1.63	E 3.367	63.929146	E/1,301		
E 9.09 Cu58 1+ 3.21 s	E 4.16 Cu59 ^{3/-} 1.36 m	Cu60 2+ 23.7 m	Cu61 3/- 3.35 h	Cu62 1+ 9.74 m	Cu63 ^{3/-} 69.17	Cu64 1+ 12.701 h	Cu65 3/- 30.83	Cu66 ¹ 5.10 m
7,44, 54.5, 1448.3,	β+ 3.8, γ 1301.5, 878.0,	β^+ 3.00, ϵ γ 1332.5, 1791.5, 826.3,	β+1.21,ε γ 283.0, 656.0,	β+ 2.93,… έ γ 1173.0, 875.7,…	σ _γ 4.5. 5.0	ε.ρ .578 ρ .651 γ 1345.8 ∂ _γ 3E2	a _y 2.17, 2.2	γ 1039.3 ∂ _γ 1.4E2.6E1 E 2.642
F 8 563	E 4.800	E 6.127	E 2.237	E 3.948	62.929601	E- 5/8 E+1.0/3	04.927784	NICE
NI57 3'- 35.6 h	Ni58 68.08	Ni59 3/- 7.6E4 a	Ni60 26.22	Ni61 ^{3/-} 1.14	Ni62 3.63	Ni63 100. a β= .0669	0.93	2.517 h β ⁻ 2.14, 0.65,
+ 85	σ_{y} 4.6, 2.2 σ_{a} <.03 mb	no y a, 78, 1.2E2 a, 14, 20	σ _y 29, 1.5	$\sigma_{y} \sim 2.5, -1.8$ $\sigma_{cl} \leq .03 \text{ mb}$	σ _γ 14,5, 6.6	noγ ∂ _γ 24	ay 1.8, 1.2	γ 1481.9. 1115.5. ∂ _γ 23. 11 E 9 197
E 3 265	57 935348	E 1.073	59.930790	60.931060	61.928348	E .0669	63.927909	CeCA
Co56 4+ 77.3 d	Co57 7/- 271.8 d	5 ⁺ Co58 ²⁺ 9.1 h 70.88 d π249.e ⁻ c ₁ β ⁺ .474-	Co59 7/-	2+ Co60 5+ 10.47 m 5.271 a π586.e ⁻ β-16ω-	Co61 //- 1.650 h β 1.22	$\begin{array}{c} b^{+} & \textbf{C062} & 2^{+} \\ \textbf{13.9 m} & \textbf{1.50 m} \\ \beta^{-} & 2.9 \\ \gamma & 11730, & 2.9 \\ \gamma & 11730, & 2.9 \\ \end{array}$	27.5 s β ⁻ 3.6 γ 87.3	0.30 s β ⁻ 7.0, γ 1345.8, 931.1
46.8, 1238.3	y 122.1, 136.5, 14.4,	0y 1.4E5. 7E3	σ _y (21+16), (39+35	0, 0, 1332.5 0, 1173.2 0, 6E1, 0, 20.4 E 2 824	E 1.322	E 5.34 E 5.32	E 3.67	E 7.31
E 4.566 Fe55 ^{3/-} 2.73 a	Fe56 91.75	Fe57 1/- 2.12	Fe58 0.28	Fe59 3/- 44.51 d	Fe60 1.5E6 a β ⁻ .14?	Fe61 6.0 m β ⁻ 2.8, 2.6,	Fe62 68 s β ⁻ 2.5?	Fe63 ^{(f} 6 s
is -9mb	ay 2.5, 1.4	∂ _γ 2.5, 1.6	ay 1.3, 1.2	y 1099.2, 1291.6.− ∂y −13 E 1 565	y 58.6D, e	297.9 E 3.98	E 2.53	E 6.3
E 232	55.934941	56.935398	57.933280	(0)+ MpE9 3+	Mn59	3+ Mn60 0+	Mn61(5/)	Mn62
Mn54 ³⁺ 312.1 d	Mn55 5/ 100	Mn56 3+ 2.578 h β ⁻ 2.84, 1.04,··· v 846.8, 1810.8	M157 5 1.45 m β ⁻ 2.55,	3.0 s ↔ 65 s $β^-6.1 β^-3.8$ $γ^{1447-} γ^{810.8}.$	4.6 s β= 4.4, 4.7 γ 726 1, 472.6,	1.77 s β ⁻ 5.7, β ⁻ γ 824, 17 272 noγ	0.71 s β ⁻ γ 628.6, 206.8,···	0.9 s β- γ 877, 942, 1291 1815
834.8	0 122 140	2113 1	692.0	1323.1	570.5,			

<u>A simplified picture of the chain of events producing</u> <u>cosmic rays detected at Earth (Binns et al.)</u>

Acceleration of normal ISM from residualMassive standISM in superbubble and the superbubblestellar windwall (x 5 dilution of massive star material)collapse S

Massive star material (ejecta plus stellar wind) accelerated by corecollapse SN shock in OB association

Sources of Galactic CRs

♦ reacceleration

OB associations in our neighborhood

12/12/18

D'Files/ACE'Papers-Meetings/ACE Science Team Mtg_11_2015/OB_assoc_map_1000pc

Ionization-Gasdynamics Simulation of Wind-Blown Bubble from W-R Star

IONIZATION FRACTION

Simulation carried out using AVATAR code, including lonization from the star

See also Dwarkadas and Rosenberg (2013).

IONIZATION-GASDYNAMICS MODELLING

DENSITY CONTOURS OVER VELOCITY VECTORS

See Dwarkadas & Rosenberg (2013, HEDP).

Conclusions

- Combination of ²²Ne and ⁶⁰Fe results suggests that:
 - Local Cosmic Rays are accelerated by Massive stars and Supernovae
 - Wolf-Rayet stars must be involved
 - The supernova producing the ⁶⁰Fe could arise from the same W-R star or in the same association.
 - Time required between nucleosynthesis and transport to Earth does not greatly exceed the ⁶⁰Fe half-life of 2.6 Myr
 - Our distance from the source of this nuclide does not greatly exceed the distance that GCRs can diffuse over this time scale, <~ 1 kpc
 - The CR source is a mix of newly synthesized material with old ISM

These results point to cosmic ray acceleration in a single star or group of massive stars, forming an OB association, which give rise to bubbles and superbubbles.

- Bubbles and Superbubbles will be in general partially ionized.
- Large-scale turbulence within bubbles must be taken into account.

Combining ⁵⁹ Ni
results with
results on ⁶⁰ Fe we
obtain the time
between
nucleosynthesis
and acceleration
of :

10⁵ yr < τ < several Myr

(not sure if this is still valid in light of recent results)

Conclusions

Questions and Discussion