Recent results from AMS-02 and their interpretation

Nicola Tomassetti

Perugia University & INFN

Searching for the sources of Galactic cosmic rays December 11- 14 | APC Paris, France

Meanwhile at POCC

The AMS collaboration

AMS Collaboration

- 16 countries ٠
- 60+ institutes ٠
- 500+ physicists ٠
- 20 years ٠

FINLAND

\rightarrow Steadily taking data on the ISS since May 19th 2011

The AMS instrument – Pre-launch Integration

Size 5 m x 4 m x 3m Weight 7.5 tons

300k readout channels

More than 600 microprocessors reduce the data rate from 7 Gb/s to 10 Mb/s

Total power consumption < 2.5 kW

AMS-02 installed in Endeavour's Payload Bay

May 16th 2011: launch

May 16, 2011 @ KSC, US STS-134 / Endeavour on launchpad

Redundant energy measurements

Charge-sign separation

Reduntant charge measurements

Top-of-Instrument fragmentation

Study of fragmentation processes appearing at different levels in the detector. Example: secondary production of Boron in TRD material by Z>5 nuclei Z>5 **Nucleus** Layer-1 Q distribution LAYER-1 entries / bin Layer1 charge Q Boron > 90% Multi-Z fit LAYER-2 USED Carbon 6% **TO BUILD** Nitrogen 0.7% **Z TEMPLATES Boron** 10^{3} Oxygen 1% **INNER + TOF:** 10² Neon Nagnesiun **BORON SELECTION** silicon 10 E 12 14 16 6 18 8 10 4 Layer-1 Q_x NT & Oliva 1510.09215

Top-of-Instrument fragmentation

3D HADRON TOMOGRAPHY FROM PARTICLE INTERACTIONS IN THE MATERIAL

Proton and helium fluxes

- Re-analysis of data ongoing
- Larger statistics, strong improvement of systematic errors $\Phi = C \left(\frac{R}{45 \,\text{GV}}\right)^{\gamma} \left| 1 + \left(\frac{R}{R_0}\right)^{\Delta \gamma/s} \right|^{\gamma}$
- > Different slopes. Common value for critical rigidity R0

14

Carbon and Oxygen fluxes

$$\Phi = C \left(\frac{R}{45 \,\text{GV}}\right)^{\gamma} \left[1 + \left(\frac{R}{R_0}\right)^{\Delta \gamma/s}\right]^s$$

p/He ratio

2.5 years of data [PRL 115 (2015) 211101]

Lithium, Beryllium, and Boron

- ✓ Two groups: Li-Be-B vs He-C-O
- ✓ Spectral hardening at R~O(300 GV)
- ✓ Different changes of slopes Li-Be-B > He-C-O

Lithium, Beryllium, and Boron, and Nitrogen

- ✓ Two groups: Li-Be-B vs He-C-O
- ✓ Spectral hardening at R~O(300 GV)
- ✓ Different changes of slopes Li-Be-B > He-C-O

Lithium, Beryllium, and Boron

- ✓ Two groups: Li-Be-B vs He-C-O
- ✓ Spectral hardening at R~O(300 GV)
- ✓ Different changes of slopes Li-Be-B > He-C-O

Antiproton flux and \overline{p}/p ratio

✓ \overline{p}/p expectation: high-energy decrease [B/C-like] ✓ \overline{p}/p observation: at R>50 GV, the ratio is constant

➢ Use breaks in injection spectra: high-rigidity break at R~350 GV➢ Set strong diffusive reacceleration with $v_A \approx 30 - 40 \ km \ s^{-1}$ ➢ Use proton injection steeper than that of Z>1 elements

> At tension with antiprotons

 $\frac{1}{2} \approx 6 \ km \ s^{-1}$ $v_A \gg$

Strong power requirement Drury & Strong 1608.04227

➢ Use breaks in injection spectra: high-rigidity break at R~350 GV➢ Set strong diffusive reacceleration with $v_A \approx 30 - 40 \ km \ s^{-1}$ ➢ Use proton injection steeper than that of Z>1 elements

> At tension with antiprotons

Tension with antiprotons: @100+ GeV

Jin+ 1504.04604 Jin+ 1701.02213

➢ Use breaks in injection spectra: high-rigidity break at R~350 GV➢ Set strong diffusive reacceleration with $v_A \approx 30 - 40 \ km \ s^{-1}$ ➢ Use proton injection steeper than that of Z>1 elements

> Add shock accelerated antiprotons?

 10^{-3} ---- Best Fit Model C, δ = 0.40, z_L = 5.6 kpc \ominus AMS-02 ----- Best Fit Model C, $\delta = 0.40$, $z_1 = 5.6$ kpc & Stoch. Acc. $K_B = 6.1$ 10-4 p^/p^+ Best Fit Models $K_{B} = 6.1 - 10.4$ 95% CL Range $K_{B} = 4.6 - 12.4$ 10^{-5} Combined Back. Unc. 10^{-6} 0.1 1.0 100.0 10.0

 E_{kin} (GeV)

Cholis & Hooper 2017 [1701.04406]

Decention spectral pightrig adverse in internation spectral pightrig in the breakstat R~350 GW Model K [best fit] Set strong diffusive reacceleration with $v_A \approx 30 - 40 \ km \ s^{-1}$ \succ Use proton injection steeper than that of Z>1 elements p/p >••Add shock accelerated antiprotons? 2 → At tension with shock accelerated boron NT & Oliva [1707.06915] $_{10^2}$ B/C driven fit pbar/p driven fit key parameters 1 10⁶ p/p ratio 3/C ratio (a) B/C ratio - Model K [best fit] (c) p/p ratio - Model K [best fit] ղ, (cm³) (e) Model K [best fit] 3 p/p **10**⁴ 10¹ - COLOR 2 10⁵ SNR **SNR** B/C 10² 10⁶ 10^{2} 10^{2} 10³ 0.015 10 0.02 10 kinetic energy (GeV/n) kinetic energy (GeV) K₀/L (kpc/Myr)

Behind the spectra: revisited CR transport

Drop linearity: Non-linear CR transport

Drop homogenity: Non-separable CR diffusion

- > Universal change of slopes for all elements (pri, sec, sec/pri ratios)
- > Harder antiparticle spectra (but not as hard as e^+ or \overline{p})

Behind the spectra: revisited CR transport

Secondary antiprotons from B/C driven THM global fit

Global Bayesian analysis

Cross section uncertainties: estimated from LHC data and MC generators Astrophysical uncertainties: estimated by MCMC including correlations and degeneracies

Nearby source appearing in the CR flux

✓ Evidences for nearby SN explosion(s)

Abundances of ⁶⁰Fe isotopes (Binns+ 2016, Science 352, 677) Sco-Cen OB: T~3 Myr, d~100 kpc, E~2x10⁵⁰ erg

- ✓ Many features explained
- Poor predictivity

Kachelriess+ PRD arXiv:1710.02321

Two classes of accelerator + fluctuations in composition \rightarrow p/He ratio

Possible signature: multi-TeV flattening of the p/He ratio

Energy and mass dependences

Nearby source appearing in the CR flux

[NT1509.05774]

F(d)

Milky Way model, Ahlers 0909.4060

 $\tau^{sp} = (n \, v \, \sigma^{sp})^{-1} \propto A^{-2/3}$ $K(R) \propto R^{\delta}$ Spallation-limited diffusion distance $\lambda^{sp} \approx \sqrt{K \tau^{sp}} \propto A^{-1/3} R^{\delta/2}$ F(R) \rightarrow Fraction of SNRs contributing to the CR flux as function of rigidity R F(R) =P(l)dl

— F(d)

PDF of SNRs at distance *d* [Ahlers+ 0909.4060]

Nearby source appearing in the CR flux

Milky Way model, Ahlers 0909.4060

Energy and mass dependences $\tau^{sp} = (n \ v \ \sigma^{sp})^{-1} \propto A^{-2/3}$ $K(R) \propto R^{\delta}$

Spallation-limited diffusion distance $\lambda^{sp} \approx \sqrt{K \tau^{sp}} \propto A^{-1/3} R^{\delta/2}$

→ Fraction of SNRs contributing to the CR flux as function of rigidity R $F(R) = \int_{0}^{\lambda^{sp}(R)} P(l)dl$

✓ Atic data: upturn in light/heavy ratios [Panov+ 2014]
✓ Signature of local SNR in C/Fe and O/Fe ratios

Light VS Mid CR elements puzzle

Jóhannesson+ arXiv:1602.02243

BAYESIAN ANALYSIS OF CR PROPAGATION: EVIDENCE AGAINST HOMOGENEOUS DIFFUSION ?

- Mid: Boron to Silicon [B/C driven]
- Light: ²H-³He- \overline{p} [\overline{p}/p driven]

The cosmic-ray "quartet" -> B/C-free test for CR propagation

✓ Better diagnostic for antiprotons

- Similar progenitors (p, He fragmentation off ISM)
- Similar propagation histories (probe similar regions of the Galaxy)
- ✓ Known production cross-sections

The cosmic-ray "quartet" -> B/C-free test for CR propagation Example: deuteron/helium ratio

NT & Feng 2017: the curios case of HE deuterons in CRs [1612.05651] Sokol datum: Turundaevskiy & Podorozhnyi ASR 59, 496-501 (2017)

The cosmic-ray "quartet" -> B/C-free test for CR propagation

AMS-02 mass measurement from R, Z, γ

$$M = \frac{RZ}{\gamma\beta} \implies \left(\frac{\delta M}{M}\right)^2 = \left(\frac{\delta R}{R}\right)^2 + \gamma^4 \left(\frac{\delta\beta}{\beta}\right)^2$$

34

solar modulation: observational milestones

Long-term behavior of the p/He ratio

