TUNKA & TAIGA

Vasily Prosin for the Tunka and TAIGA Collaborations 11.12.2018

Tunka-133

51° 48' 35" N 103° 04' 02" E 675 m a.s.l.

175 optical detectors EMI 9350 and HAMAMATSU Ø 20 cm

TAIGA (Tunka Advanced Instrument for cosmic rays and Gamma - Astronomy)

The main aim of TAIGA project:

Study of very high energy (>30 TeV) gamma rays from Galactic accelerators with large area array (~10 km²)

TAIGA - collaboration

Germany

Hamburg University (Hamburg)

DESY (Zeuthen)

MPI (Munich)

Italy

Torino University (Torino)

Romania

ISS (Bucharest)

Russia

SINP MSU (Moscow)

API ISU (Irkutsk)

INR RAS (Moscow)

JINR (Dubna)

MEPHI (Moscow)

IZMIRAN (Moscow)

NSU (Novosibirsk)

BINR SB RAS (Novosibirsk)

Scientific Program

- 1. Study of high-energy edge of spectrum of galactic gamma-ray sources. Search for Pevatrons.
- 2. Monitoring of the bright extragalactic sources.
- 3. Apply the new hybrid approach (joint operation of IACTs and wide-angle timing array) for study of cosmic rays mass composition in the "knee" region $(10^{14}-10^{16} \,\mathrm{eV})$
- 4. Fundamental physics (photon-axion oscillation, indications of Lorentz invariance violation etc.).

The TAIGA experiment - a hybrid detector for very High energy gamma-ray astronomy and cosmic ray physics in the Tunka valley

TAIGA = Tunka Advanced Instrument for cosmic rays and Gamma Astronomy
The main idea of large array of low threshold Air Cherenkov stations (the nonimaging technique) with some Imaging Air Cherenkov Telescopes.

Low threshold wide angle station

Digitized with DRS-4.
Step = 0.5 ns
Synchronization and data
taking via optical cable

Winston cone and PMT with 20 cm photocathode diameter

 $S \text{ tot } = 0.5 \text{ m}^2$

TAIGA-IACT

$$D = 4.32m$$
 $F = 4.75m$

$$F = 4.75m$$

29 glass mirrors of 60 cm diameter

Camera: 560 PMTs (XP 1911) with 15 mm useful diameter of photocathode

Winston cone: 30 mm input size, 15 mm output size

aperture single pixel = 0.36°

FOV diameter ~ 9.6°

Energy threshold ~1.5 TeV

Camera of the TAIGA-IACT

HiSCORE

2014 – TAIGA-HiSCORE (High Sensitivity Cosmic Ray Explorer) – 9 stations

2016 – 2017 28 stations

201845 stations

Final plan – 120 stations

EAS Cherenkov Arrays Tunka-133 and TAIGA-HiSCORE Data Processing and Results

Tunka-133 single detector readout:

Fitting of the pulse and measuring of the parameters: Q=c·S_{pulse}, A_{max}, t_i , τ_{eff} =S/A/1.24

Time step = 5 ns

anode:

dynode:

HiSCORE station sum record 2017-2018

Time step = 0.5 ns

anode:

©6000 2000 100 120 140 160 180 200 220 240 260 280 300 Time, ns

dynode:

synchronisation 100 MHz:

EAS parameters reconstruction

CORSIKA: Fitting functions – LDF and ADF

ADF: $A(R) = A(400) \cdot ((R/400+1)/2)^{-bA}$ steepness: b_A

LDF: $Q(R) = Q(300) \cdot ((R/300+1)/2)^{-bQ}$ steepness: b_Q

 $b_A > b_Q$

An Example of Tunka-133 event reconstruction

An Example of TAIGA-HiSCORE event reconstruction

EAS parameters reconstruction by Cherenkov light flux density Q_{200}

Fitting of pulse amplitudes (A_i) with ADF. Getting of X_0 , Y_0 and ADF steepness (b_A) . Getting Q_{200} with LDF

$$\mathbf{E}_{0} = \mathbf{C} \cdot \mathbf{Q}_{200}^{0.94}$$

EAS parameters reconstruction by Q₇₀

For energy $E_0 < 10^{15}$ eV:

 X_0,Y_0 is the gravity center of A_i for 4 stations, closest to the core.

Experimental correlations are obtained for the energy range $10^{15} - 3 \cdot 10^{15}$ eV:

$$Q_{70} = Q_{gc} \cdot 1.06(sec(\theta) - 1)$$
:

 \mathbf{Q}_{gc} is mean value by these 4 stations

Minimal event configuration:

$$\mathbf{E}_0 = \mathbf{C} \cdot \mathbf{Q}_{70}^{0.88}$$
:

HiSCORE Effective Area

fitted events $E_0 > 10^{15} \text{ eV}$

gravity center events $E_0 < 10^{15} \text{ eV}$

Common observation of ISS LIDAR by HiSCORE and optical telescope MASTER

Absolute pointing of HiSCORE $\Delta \psi \sim 0.1^{\circ}$

EXPERIMENTAL DATA

Tunka-133:

- 7 seasons, 350 nights, 2175 h, $\sim 1.5 \cdot 10^7$ single cluster events
- > 95% effective registration:
- \sim 375,000 events with E₀ $> 6.10^{15}$ eV,
- \sim 4,200 events with E₀ > 10¹⁷ eV

TAIGA-HiSCORE:

season 2017-2018, 35 nights, 180 h, $\sim 3.10^8$ single station events

> 95% effective registration:

$$2 \cdot 10^{14} - 3 \cdot 10^{14}$$
 ~29,000 (one night 28.10.2018, Q₇₀)

$$3 \cdot 10^{14} - 10^{15}$$
 ~700,000 (35 nights, Q₇₀)

$$10^{15} - 10^{17}$$
 ~170,000 (35 nights, Q₂₀₀)

Tunka Primary Energy Spectra with EAS Cerenkov Light

Tunka-133: 350 clean moonless nights 2175 h ~375,000 events With ~100% efficiency ~4200 events with $E_0>10^{17}$ eV

TAIGA-HiSCORE:
35 clean moonless nights
180 h
~900,000 events
with ~100% efficiency

Energy spectrum: power law fitting

Energy spectrum comparison with intermediate energy experiments

United Primary Energy Spectrum $10^{13} - 10^{20} \text{ eV}$

Perspectives of Mass Composition Study

 $10^{14} - 10^{15} \, eV$ IACT image analysis similar to Argo experiment

 $10^{15}-10^{18} \text{ eV}$ Cerenkov light ADF Cerenkov light steepness b_A pulse width at $R_{core} = 300-400 \text{ m}$

CORSIKA

(Correlations are model, energy, zenith angle and composition independent)

~ 500 events – 10^7 GeV < E_0 < 10^8 GeV, $\theta = 0^\circ$, 30° , 45° green – p, red – Fe

<X $_{max}>$ vs. E_0 Tunka-133 results of 2017

? – because of the works: ATIC-2, ARGO, HAWC
The new analysis of the TAIGA-HiSCORE data is needed.
The new CORSIKA simulations are in progress now.

Perspectives of Mass Composition Study

Tunka-Grande data

for the energy range $10^{17} - 10^{18}$ eV Composition sensitive parameter:

$$\begin{split} S &= log_{10}(\rho_{\mu}(200) - C \cdot log_{10}(\rho_{sc}(200)\\ \rho_{\mu} \ muon \ density\\ \rho_{sc} \ all \ particle \ density \end{split}$$

 $C \sim 0.9$

Monitoring of "Test" gamma-ray sources (Crab, Mrk-421) by the IACT in the stand-alone mode

Expectated observation time with 50% good weather time:

Crab - 130 hr

Mrk-421 - 120 hr

Tycho - 190 hr

Due to abnormally bad weather during this season and a number of technical problems, the monitoring time of the "test" gamma sources (Crab, Mrk-421) was only about **25 hours**.

The first results will be presented after 50 hours of observation for the low-energy region and after 100 hours of observation for hybrid events.

IACT and HiSCORE joint events

Gamma-like events

Ψ – the angle between the telescope direction to the Crab

and the shower direction by HiSCORE)

Effective Time – 25 hours Full number of events with ψ <1° Criteria for Hillas parameters: width < 0.16, alfa < 18°

255 events

7 events

Gamma energy ~ 50 - 60 TeV Distances ~ 50 m, 299 m, 270 m

Expected number with energy Eg>50 TeV ~

5-10 events

Plan for 2018-19

For 100 hours

3·10⁵ hybrid events (CR mass composition)

50-100 hybrid events from Crab (E ≥.40 TeV)

Mirrors and camera are planned to be installed next year (2019)

Long term plan for TAIGA

• 1000 wide angle optical station on the 10 km² area, energy threshold 30 TeV.

• 15-20 IACTs
(10 m² mirrors).

•Muon detectors with total area 3.0 10³ m².

Conclusions

- 1. United primary energy spectrum, obtained by the same method of EAS Chernkov light flux measurement cover 4 orders of magnitude and let us confirm that the primary energy measurements are in good agreement from relatively low $(10^{14} \, \text{eV})$ to extremely high energy $(10^{20} \, \text{eV})$
- 2. Deployment of the full scale TAIGA prototype 120 wide-angle stations and three IACTs is planned for 2019.
- 3. The results from joint operation of HiSCORE and IACT we hope will let us estimate the primary mass composition for the energy around 10^{15} eV.

Thank you!

Tunka-REX

Connection of 2 antennas to 2 free channels of FADC

38 antennas are situated at the area of 1 km² now.

ADF:

1.
$$A(R) = A_{kn} \cdot exp((R_{kn}-R) \cdot (1+3/(R+2))/R_0)$$

- $2. A(R) = A_{kn} \cdot (R_{kn}/R)^{c}$
- 3. $A(R) = A(400) \cdot ((R/400+a)/(a+1))^{-b}$
- 4. $A(R) = A(400) \cdot ((R/400+1)/2)^{-b}$

All four variables $(\mathbf{R_0}, \mathbf{R_{kn}}, \mathbf{a} \text{ and } \mathbf{c})$, describing the ADF shape in the different ranges of core

Distance, are related to a single parameter of the ADF shape

- the steepness **b**.

Single PMT records at station 10

Station sum record corect shift of partial traces for the shape correction

Data processing

Parameter reconstruction procedure:

- 1. Reconstruction of an arrival direction (theta, phy) with plane front model
- 2. Core position reconstruction by the center of gravity (4 stations closest to the center of gravity). Xc, Yc, Qmean
- 3. Core position by fitting of pulse amplitudes with ADF.
- 4. Arrival direction with the curved front model.
- 5. Removing of high deflections (> 500 ns).
- 6. Repetition of 4.
- 7. Removing of high deflections (> 6 ns).
- 8. Repetition of 4.

Data processing

- 4. Analysis of relative PMT delays in each station "dt_pmt[date].dat".
- 5. Shift of traces to correct the single PMT delay, summing of signals from anodes and dynodes, measuring of parameters of summed pulses "prm18 2/NNsDDMMY.prm"
- 6. Relative amplitude calibration of anode channels and coefficients from dynode to anode "cal18/calDDMM.dat".
- 7. Merging of single station events into EAS ->=4 stations coincidence Result "DDMMY c4.tim" files.

Data processing

- 1. All data storage and processing is made at the server of SINP MSU now:
 - a) TAIGA-HiSCORE
 - b) Tunka-133
 - c) Tunka-Grande
- 2. Viewing of separate traces corresponding to 44x4=176 PMTs. Analysis of operation quality list of operating PMT "lstpmt[date].dat"
- 3. Binary data decoding for every station and every DRS channel. Pulse parameters measuring: A, S, T_{front} (additional delay) "[Ns]_[dateY].prm".

2017-2018 data

- 1. Limitation of the trace length from 1024 to 400 points (leads to data volume decreasing to 2.5 times).
- 2. Control of the rate of 4 stations coincidence during the data registration and recording of preliminary "*.tim4" files.
- 3. Selection of double station coincidence events for storage and transfer. Recording of "*.tim2" files. Double coincidence selection decreases the data volume to about 3 times.

Total data volume decreasing is about 7.5 times.

35 nights with more or less good weather 180 hours About 3·10⁸ single station events