

Latest Cosmic Ray Results from IceTop and IceCube

Matthias Plum for the IceCube collaboration <matthias.plum@marquette.edu>

Outline:

- Introduction to CRs & IceTop/IceCube
- Energy spectrum and composition
- Low energy muons in IceTop
- PeV Gamma ray searches
- PeV Neutron searches
- Summary

Cosmic Rays Multi-Messenger Search

Goal:

Looking for the origin of galactic comic rays

Explain the structure in the energy spectrum, e.g. knee, second knee,

- CR particle deflected (charge dependent)
- High energy γ and neutrons hard to measure

IceCube Observatory

IceCube String

Digital Optical Modules(DOM)

Deployed over 6 seasons: Completed in 2011

IceTop (Surface Air Shower Array):

- -~1 km² instrumented area
- -81 stations with 2 tanks each
- -2 DOMs per tank \rightarrow 324 total DOMs
- Measure electromagnetic and low energy muon components of air shower

IceCube (In-Ice Array):

- -~1 km³ instrumented volume
- -86 strings with 60 DOMs each with 17m spacing→5160 total DOMs,
- -Depth: 1.45-2.45 km
- Measure high energy muon component of air shower

Same DOMs used for IceCube and IceTop

IceTop

2010 November

IceTop Tank

- 2 DOMs per tank
- 2.3 m³ ice

2012 November

4

IceTop-Only Reconstruction

Lateral signal distribution in VEM: $S(R) = S(R_0) \left(\frac{R}{R_0}\right)^{-\beta - \kappa \log_{10}\left(\frac{R}{R_0}\right)}$

(Double Logarithmic Parabola)

IceCube/IceTop Coincidence Reco.

IceTop/IceCube - Neural Network Reconstruction

Energy Reconstruction & Resolution of Both Analyses

Both analysis method have:

- Similar small energy bias over the whole energy range
- Similar tight resolution

Only small primary composition dependency visible

IceTop Energy Spectrum

 IceTop Energy Spectrum unfolded using maximum likelihood method. (Composition assumed from H4a model: *T. Gaisser, T. Stanev & S. Tilav: Front. Phys.(Beijing) 8 (2013) 748-758*)

- •3 years of data (May '10 Jun '13)
- •Standard cuts (IceCube Collab., M.G. Aartsen et al., PRD 88 (2013) 042004)
- Data set divided into individual years shows strong agreement

IceTop/IceCube Energy Spectrum

- 3 years of data (May '10 Jun '13)
- •Standard cuts (IceCube Collab., M.G. Aartsen et al., PRD 88 (2013) 042004)
- Due to geometric constraints, energy bin size of coincidence analysis reduced
- Strong agreement between both analysis technique

Mass Reconstruction

KDE templates

Log(E/GeV): 7.4 - 7.5

- Monte Carlo data converted into template 'probability density functions' (PDFs) for each primary in each energy bin
- Used adaptive Gaussian kernel width to preserve characteristic features of neural net output
- PDFs used in extended Likelihood data analysis
- Superposition model of weighted primary group PDFs fitted to data result:

$$f(x; \theta) = \sum_{i=1}^{m} \theta_i f_i(x),$$

Application to Data – Example Bin

December 11, 2018

Composition Energy Spectrum

- Nominal results derived from Sibyll2.1
- Agreement with models within statistical and systematic uncertainty

Models (as discussed in [*Astroparticle Physics 35* (2012) 801–806])

- H3a [T. Gaisser, T. Stanev & S. Tilav: *Front. Phys.(Beijing)* 8 (2013) 748-758]
- H4a [T. Gaisser, T. Stanev & S. Tilav: Front. Phys.(Beijing) 8 (2013) 748-758]

Fits:

- GST [T. Gaisser, T. Stanev & S. Tilav: Front. Phys.(Beijing) 8 (2013) 748-758]
- GSF (Global Spline Fit) [H. Dembinski, R. Engel, A. Fedynitch, T. Gaisser, F. Riehn, T. Stanev: PoS(ICRC2017)533]

Detector Systematic Uncertainty

Systematic offsets on flux and <ln(A)> due to:

- Snow (±0.2 m)
- Light yield (-12.5%, +9.6%)
- Energy scale (±3%)

Hadronic Systematic Uncertainty

Scaling data according to differences in detector response due to interaction models result in uncertainty region in the flux and the <ln(A)>

Comparison with other Experiments

Comparison with other Experiments

- Composition seems to get heavier with increasing energy up to 10⁸ GeV
- Overall good agreement with the composition results from most other experiments

18

Muon Density Measurement

Low Energy Muons (>1GeV) at IceTop At large lateral distance where EM component is no longer dominant, IceTop can directly count the number of low-energy muons, which provides clues about the hadronic interaction models.

> EPJ Web Conf. 99 (2015) 06002 arXiv:1501.03415 EPJ Web Conf. 145 (2017) 01003

Comparing low energy muons with CR Flux Models

- Muon density is very sensitive to the primary mass composition
- Possible test internal consistency of the hadronic interaction model

PeV Gamma Ray Search

December 11, 2018

Matthias Plum - Marquette University

PeV Gamma Ray Search

- 5 years of IceCube data analyzed
- ~500k events in final sample
- No significant evidence found to exclude the null hypothesis in
 - All Sky Scan
 - H.E.S.S. Correlation Study
 - HESE Correlation Study

Scaled Angular-integrated Flux

• Sensitivity of the analysis is calculated to place an upper limit on the flux.

PoS(ICRC2017)705 PoS(ICRC2017)715

PeV Neutron Search

- In 4 years of data (2010-2014)
- No significant correlation is found with known nearby galactic objects
- Upper limit on the flux calculated 10 PeV < E < 1 EeV

Astrophysical Journal, 830:129 (12pp)

- PeV neutrons can be produced by interaction of charged CRs
- Only nearby sources should be detectable (R ~ 10 kpc (E/PeV))
 - Target (E> 100 PeV) and all-sky (E> 10 PeV) searches performed

December 11, 2018

Summary & Outlook

- IceTop+IceCube are versatile cosmic ray detector
- Determine the all-particle cosmic ray flux with two different analysis methods
- Determine the flux of cosmic rays for four mass groups (with representative masses H, He, O, Fe) (publication soon)
- Study the low energy muon content of air showers providing hints to guide interaction model development (publication soon)
- Search for gamma-rays with energy above 1 PeV (publication soon)
- Search for neutrons with energy above 10 PeV (published)

Backup

Superposition Model of Mass Composition PDFs

Total PDF for all nuclear mass cosmic rays is given by

(our model only use 4 typical components (H,He,O,Fe))

Due to the constraint, one fraction parameter can be substituted

With Extended LogLikelihood:

- Poisson fluctuations included
- Advantage of extended LL is to have a more symmetrical fit problem (easier fitting and error calculation)
 - 4 free fit parameter

• By using
$$\mu_i = \theta_i \nu$$

$$\log L(\nu, \theta) = -\nu + \sum_{i=1}^{n} \log \left(\sum_{j=1}^{m} \nu \theta_j f_j(x_i) \right)$$

 $f(x; \theta) = \sum \theta_i f_i(x),$

 θ_m , by $1 - \sum_{i=1}^{m-1} \theta_i$

follows
$$\log L(\boldsymbol{\mu}) = -\sum_{j=1}^{m} \mu_j + \sum_{i=1}^{n} \log \left(\sum_{j=1}^{m} \mu_j f_j(\boldsymbol{x}_i) \right)$$

Fit result gives now the number of events per mass species, which we need for the energy spectrum

Neutron All-Sky

Matthias Plum - Marquette University

Neutron Target Search

- msec pulsars [Manchester et al. 2005]:
 - http://www.atnf.csiro.au/research/pulsar/psrcat/
 - 17 objects with P < 10 msec
 - median distance ~ 1.9 kpc —> Ec ~ 220 PeV
- y pulsars [Abdo et al. 2013]: confirmed high energy photons
 - http://fermi.gsfc.nasa.gov/ssc/data/access/lat/2nd_PSR_catalog
 - 16 objects
 - median distance ~ 2.7 kpc —> Ec ~ 320 PeV
- HMXB [Liu et al. 2007]: compact object + massive star
 - http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/442/1135
 - 20 objects
 - median distance ~ 4.2 kpc —> Ec ~ 480 PeV