Radial distribution of Galactic Cosmic rays

Ruizhi Yang Max-planck-institute for nuclear physics

Sources of Galactic CRs Paris, Dec 9 2016

<u>Outline</u>

Diffuse gamma-ray emission in the Galactic plane (PRD 93, 123007, RY, F.Aharonian and C.Evoli)

 Extended gamma-ray emission towards young star clusters (arXiv:1612.02250, RY and F.Aharonian)

Gamma-ray emission in the plane (|b|<5°): Point sources
+ CR interaction with ambient gas + ICs +isotropic

• CR interaction with gas dominates in the plane.

 Gamma-ray map + gas distribution -> CR distribution (See also C. Evoli's talk)

Gamma-ray sky

Gamma-ray counts map

Point source contribution

Dust opacity map (gas column)

Gas tracers

- Dust opacity: all sky coverage, free of "dark gas" problem, without distance information
- HI and CO: With distance information. Various of biases.

Fit with dust column template

Hardening of spectrum toward inner galaxy. (| b|<5°)

Hardening of spectrum toward inner galaxy. See also D. Malyshev's talk

Higher latitude?

5° <|b|<10°

10° <|b|<15°

Hardening is only significant in low latitude

- Use kinematic distances.
- 6 Galactocentric gas rings (|b|<5°).
 - CO conversion factor left free in the fit.

Index distributions

Distance to GC (kpc)

Emissivities per H (CR density), uniform X_co

CRs SED in different rings.

Source distributions

- Most of OB stars exist in associations or clusters, stellar wind/ SNRs in such structure form bubbles/superbubbles and can accelerate CRs (A. Bykov's talk).
- Isotope measurement favor a superbubble origin. (W.R Binns' talk)
- Could be visible in gamma-ray due to CR-gas interaction.
- So far the only detection is Cygnus cocoon. A few more powerful systems: NGC 3603, Westerlund 1, Westerlund 2. RSGC 1.....

Fermi LAT counts map (>1 GeV)

Max-Planck-Institut Für Kernphysik

Westerlund 2 (Preliminary results)

Residual map (>10 GeV), known source removed

Index ~ -2.1, up tp 300 GeV

NGC 3603 (Preliminary results)

Residual map (>10 GeV), known source removed

Index ~ -2.3, up tp 300 GeV

NGC 3603 (Preliminary results)

Association with the giant HII region

Enhanced CR density and harder spectrum

OB star clusters

Cygnus cocoon revisited, hard spectrum extends to 500 GeV without cutoff.

- Very extended emission towards Westerlund 2 and NGC 3603 detected, hard spectra extends to ~ 300 GeV.
- CR energy ~ 1e49 1e50 erg in such structures if assuming hadronic origin of gamma-rays. Alternative CR sources in addition to isolated SNRs.
- Crowded region, need to check possible contribution from unknown PWNs.

Conclusions

- Spatial variation of CR density and spectral shape
- The results derived in outskirts of Galaxy is consistent with direct measurement
- A maximal CR density at 4-6 kpc.
- A lower CR level in GC region.
- More OB star clusters detected in gamma-rays.

Implications

- The maximal at 4-6 kpc is coincidence with the maximal of OB stars, may caused by higher injection rate by OB star clusters.
- In uniform X_co case, CR density monotonic rise toward GC. GC as a significant CR source? Connected with GeV excess, Fermi bubble?
- A lower CR density in GC region, may connected with strong advection therein.
- The hardening in the inner galaxy may also be caused by strong wind there (probably CR driven).
- Evidence for OB star cluster as an substantial (even dominate) CR source. Superbubble as Pevatrons?

 \mathbf{O}

