Gamma-rays and the sources of galactic cosmic rays (with a focus on PeVatrons and galactic centre)

Stefano Gabici APC, Paris

www.cnrs.fr

SN explosions-> enough power to explain CRs

Baade & Zwicky 1934 (see also Ter Haar 1950)

SN explosions-> enough power to explain CRs

Baade & Zwicky 1934 (see also Ter Haar 1950)

SNR shocks-> acceleration sites

Shklovsky 1954, Ginzburg & Syrovatskii 1964

Intro

Gal Centre

SNRs?

SN explosions-> enough power to explain CRs

Baade & Zwicky 1934 (see also Ter Haar 1950)

SNR shocks-> acceleration sites

Shklovsky 1954, Ginzburg & Syrovatskii 1964

Diffusive Shock Acceleration

BOBALSKy 1977-1978 (Blandford, Ostriker, Bell, Axford, Leer, Skadron, Krymskii)

T			
	n	r n	\wedge
			U
_	•••	•	

Gal Centre

SNRs?

SN explosions-> enough power to explain CRs

Baade & Zwicky 1934 (see also Ter Haar 1950)

SNR shocks-> acceleration sites

Shklovsky 1954, Ginzburg & Syrovatskii 1964

Diffusive Shock Acceleration

BOBALSKy 1977-1978 (Blandford, Ostriker, Bell, Axford, Leer, Skadron, Krymskii)

y-rays from pp interactions

Drury, Aharonian & Völk 1994

Cherenkov telescope

Intro

SNRs

Gal Centre

SNRs?

Conclusions

SN explosions-> enough power to explain CRs

Baade & Zwicky 1934 (see also Ter Haar 1950)

SNR shocks-> acceleration sites

Shklovsky 1954, Ginzburg & Syrovatskii 1964

Diffusive Shock Acceleration

BOBALSKy 1977-1978 (Blandford, Ostriker, Bell, Axford, Leer, Skadron, Krymskii)

y-rays from pp interactions

Drury, Aharonian & Völk 1994

Conclusions

Cherenkov telescope

very popular but not proven (yet?)!

SNRs?

Gal Centre

SNRs

Intro

Are SNRs proton PeVatrons?

Intro SNRs Gal Centre SNRs? Conclusions

Are SNRs proton PeVatrons?

Intro SNRs Gal Centre	SNRs?	Conclusions
-----------------------	-------	-------------

Are SNRs proton PeVatrons?

Intro	SNRs	Gal Centre	SNRs?	Conclusions
-------	------	------------	-------	-------------

Intro	SNRs	Gal Centre	SNRs?	Conclusions
-------	------	------------	-------	-------------

current driven, non-resonant instability (Bell 2004, 2013) -> PeV particle acceleration possible in the very early (tens of years) stage of a SNR evolution -> ejecta dominated phase -> is there enough power to feed the PeV CR population?

Intro SNRs Gal Centre SNRs? Conclusions

current driven, non-resonant instability (Bell 2004, 2013) -> PeV particle acceleration possible in the very early (tens of years) stage of a SNR evolution -> ejecta dominated phase -> is there enough power to feed the PeV CR population?

Intro SNRs Gal Centre SNRs? Conclusions

Indirect detection of PeVatrons?

with γ-ray data? Tests for CR origin

Intro

SNRs

Gal Centre

tre

SNRs?

Conclusions

Is the paradigm consistent with γ-ray data? Tests for CR origin

How many SNRs should we detect in the HESS galactic plane survey?

vith γ-ray data? Tests for CR origin

How many SNRs should we detect in the HESS galactic plane survey?

RED and BLACK regions -> with or without Inverse Compton contribution

Intro	SNRs	Gal Centre	SNRs?	Conclusions

Tev domain Is the paradigm consistent with γ-ray data? Tests for CR origin

How many SNRs should we detect in the HESS galactic plane survey?

RED and BLACK regions -> with or without Inverse Compton contribution

Observational signature

p-p interactions ->
$$E^p_{max} \approx 1 \text{ PeV} \longrightarrow E^\gamma_{max} \approx 100 \text{ TeV}$$

Intro SNRs	Gal Centre	SNRs?	Conclusions
------------	------------	-------	-------------

Observational signature

unattenuated γ -ray spectrum extending to the multi-TeV domain

p-p interactions ->
$$E^p_{max} \approx 1 \text{ PeV} \longrightarrow E^{\gamma}_{max} \approx 100 \text{ TeV}$$

Intro SNRs	Gal Centre	SNRs?	Conclusions
------------	------------	-------	-------------

Observational signature

unattenuated γ -ray spectrum extending to the multi-TeV domain

p-p interactions ->
$$E^p_{max} \approx 1 \text{ PeV} \longrightarrow E^{\gamma}_{max} \approx 100 \text{ TeV}$$

Observational signature

unattenuated γ -ray spectrum extending to the multi-TeV domain

p-p interactions ->
$$E^p_{max} \approx 1 \text{ PeV} \longrightarrow E^{\gamma}_{max} \approx 100 \text{ TeV}$$

H.E.S.S. Coll. 2006

color scale -> γ-rays contours -> gas (CS)

Intro	SNRs	Gal Centre	SNRs?	Conclusions
-------	------	------------	-------	-------------

Intro SNRs	Gal Centre	SNRs?	Conclusions

Intro	SNRs	Gal Centre	SNRs?	Conclusions

Intro SNRs <u>Gal Centre</u> SNRs? Conclusions
--

Where is the source?

Intro SNRs <mark>Gal Cer</mark>	ntre SNRs? Conclusions
---------------------------------	------------------------
Where is the source?

Where is the source?

Intro	SNRs	Gal Centre	SNRs?	Conclusions
-------	------	------------	-------	-------------

H.E.S.S. Coll. 2016

Intro	SNRs	Gal Centre	SNRs?	Conclusions

H.E.S.S. Coll. 2016

Intro SNRs <u>Gal Centre</u> SNRs? Conclusions

H.E.S.S. Coll. 2016

Intro SNRs <u>Gal Centre</u> SNRs? Conclusions

H.E.S.S. Coll. 2016

multi-source scenarios require excessive fine-tuning/unrealistic number of sources

Intro

Gal Centre

SNRs?

Conclusions

is Sgr A* as the source of PeV cosmic rays?

Intro SNRs <u>Gal Centre</u> SNRs? Conclusions

is Sgr A* as the source of PeV cosmic rays?

is Sgr A* as the source of PeV cosmic rays?

is Sgr A* as the source of PeV cosmic rays?

BH activity, cosmic rays, neutrinos

the GC activity highly variable (Ponti+2013) -> what if the CR acceleration efficiency was larger in the past?

Intro	SNRs	Gal Centre	SNRs?	Conclusions
-------	------	------------	-------	-------------

BH activity, cosmic rays, neutrinos

Intro	SNRs	Gal Centre	SNRs?	Conclusions

Montmerle 1979

SuperNovae Of

OB associations

Intro	SNRs	Gal Centre	SNRs?	Conclusions

Montmerle 1979

SuperNovae Ol

OB associations

Intro	SNRs	Gal Centre	SNRs?	Conclusions

Montmerle 1979

SuperNovae O

OB associations

Intro SNRs Gal Centre SNRs?	Conclusions
-----------------------------	-------------

Montmerle 1979

SuperNovae OB

OB associations

Another scenario: SNOBs, superbubbles...

CRs originate in a source which is a mixture ~20% stellar outflow/SN ejecta and ~80% interstellar medium (Murphy+ 2016 and references)
stars form in clusters -> SN explosions -> SNOBs and superbubbles

|--|

Another scenario: SNOBs, superbubbles...

CRs originate in a source which is a mixture ~20% stellar outflow/SN ejecta and ~80% interstellar medium (Murphy+ 2016 and references) stars form in clusters -> SN explosions -> SNOBs and superbubbles

Intro SNRs Gal Centre SNRs? Conclusions

Another scenario: SNOBs, superbubbles...

CRs originate in a source which is a mixture ~20% stellar outflow/SN ejecta and ~80% interstellar medium (Murphy+ 2016 and references) stars form in clusters -> SN explosions -> SNOBs and superbubbles

the acceleration mechanism might be completely different (Bykov&Fleishman92)
particle spectrum not universal, large E_{max} (large size!)

Intro	SNRs	Gal Centre	SNRs?	Conclusions	

Conclusions

The SNR hypothesis for the origin of galactic CRs is widely accepted

...but it is not proven!

- tested against Fermi and HESS observations -> OK
- one crucial question is: where are PeVatrons?
- the only known proton PeVatron in the MW is the galactic centre!
- SNOBs/superbubbles are gainign some observational support
- needs to explore alternative scenarios to the standard SNR hypothesis

Intro	SNRs	Gal Centre	SNRs?	Conclusions
-------	------	------------	-------	-------------

Backup slides

Molecular Clouds: boosting y-ray emission

Blandford&Cowie 1982, Aharonian+ 1994, Bykov+ 2000, Uchiyama+ 2010

see L. Nava's talk

Intro SNRs Gal Centre SNRs? Conclusions

Knee

(1 particle per m²-year)

10²¹

Energy (eV)

Young/mid aged SNRs: hadronic or leptonic?

Intro

Gal Centre

SNRs?

Conclusions

Young/mid aged SNRs: hadronic or leptonic?

weak B-field -> uncooled e⁻ spectrum -> hard leptonic*

* very low level of thermal X-rays from RXJ1713 -> leptonic? (Ellison+ 2010)

Intro SNRs Gal Centre SNRs? Conclusions

Soft/hadronic & hard/leptonic?

Zirakashvili & Aharonian 2010, Fukui+ 2012, Inoue+ 2012, Gabici & Aharonian 2014

Intro	SNRs	Gal Centre	SNRs?	Conclusions

Soft/hadronic & hard/leptonic?

Zirakashvili & Aharonian 2010, Fukui+ 2012, Inoue+ 2012, Gabici & Aharonian 2014

Soft/hadronic & hard/leptonic?

Soft/hadronic & hard/leptonic?

The MeV domain: CR ionization

(see SG & Montmerle 2015, Padovani+ 2009 for recent reviews)

$$H_2 + CR \longrightarrow H_2^+ + e^-$$

Intro SNRs Gal Centre SNRs? Conclusions

The MeV domain: CR ionization

(see SG & Montmerle 2015, Padovani+ 2009 for recent reviews)

Intro SNRs Gal Centre SNRs? Conclusions

The MeV domain: CR ionization

(see SG & Montmerle 2015, Padovani+ 2009 for recent reviews)

see e.g. McCall+, Indriolo+, Ceccarelli+, Vaupré+

Intro

SNRs

Gal Centre

SNRs?

Conclusions

SuperNova Remnants & MeV cosmic rays

(for a review see SG & Montmerle 2015)

SuperNova Remnants & MeV cosmic rays

(for a review see SG & Montmerle 2015)

SuperNova Remnants & MeV cosmic rays

