Acceleration of cosmic rays - general principles and extreme energies -

Martin Lemoine

Institut d'Astrophysique de Paris

CNRS, Université Pierre & Marie Curie

Outline:

- 1. Some remarks on acceleration schemes
- 2. Acceleration to ultra-high energies
- 3. Ultra-relativistic shock physics

Sources of Galactic cosmic rays – APC, December 7-9, 2016

General principles of particle acceleration

Standard lore:

→ Lorentz force:
$$\frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}t} = q\left(\boldsymbol{E} + \frac{\boldsymbol{v}}{c} \times \boldsymbol{B}\right)$$

ightarrow recall: $oldsymbol{E}\cdotoldsymbol{B}$ and $oldsymbol{E}^2-oldsymbol{B}^2$ Lorentz scalars

Case 1:
$$\boldsymbol{E} \cdot \boldsymbol{B} = 0$$
 and $\boldsymbol{E}^2 - \boldsymbol{B}^2 < 0$

 \rightarrow generic because it corresponds to ideal MHD assumptions...

 \rightarrow \exists a frame in which $\mathbf{E}_{|p}$ vanishes... particle follows helical orbits around $\mathbf{B}_{|p}$, no acceleration provided...

 \rightarrow acceleration occurs if some force or scattering pushes the particle across ${\bf B}$ along ${\bf E}...$

→ examples: Fermi-type scenarios (turbulence, shear, shocks)

Case 2:
$$\boldsymbol{E} \cdot \boldsymbol{B} \neq 0 \text{ or } \boldsymbol{E}^2 - \boldsymbol{B}^2 > 0$$

 \rightarrow acceleration can proceed unbounded along **E** (or at least **E**_I)...

 \rightarrow examples: reconnection, gaps

General principles of particle acceleration

Standard lore:

$$\rightarrow$$
 Lorentz force: $\frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}t} = q\left(\boldsymbol{E} + \frac{\boldsymbol{v}}{c} \times \boldsymbol{B}\right)$

<u>Ideal MHD:</u> $oldsymbol{E}_{|\mathrm{p}} \simeq 0$ in plasma rest frame

ightarrow **E** field is 'motional', i.e. if plasma moves at velocity $m{v}_{
m p}$: $m{E}\simeq -rac{m{v}_{
m p}}{c} imesm{B}$

 \rightarrow need some force or scattering to push particles across B

 \rightarrow lower bound to acceleration timescale: $t_{acc} = \frac{p}{\beta_{p}eB} = \frac{t_{g}}{\beta_{p}}$

- \rightarrow examples: turbulent Fermi acceleration
 - Fermi acceleration at shock waves
 - acceleration in sheared velocity fields
 - magnetized rotators

Beyond MHD:

 \rightarrow examples: - reconnection

- wakefield/ponderomotive acceleration

General principles of particle acceleration

Some caveats to bear in mind:

→ 'test-particle picture' ≠ 'non-linear picture' acceleration in fixed e.m. structure
→ 'test-particle picture'
→ acceleration + backreaction on e.m. structure

... a crucial distinction in most scenarios and for most of phenomenology:

e.g., amplification of pre-existing turbulence by accelerated particles appears necessary in supernovae remnants (or to reach PeV energies)...

e.g., in relativistic shock waves, magnetized turbulence can even be self-generated from scratch by accelerated particles...

... so far, only Fermi-shock scenarios try to account for this backreaction: see A. Bykov... ... others assume a simple test-particle picture!

e.g., current Particle-in-cell (PIC) simulations can probe $10^4 \omega_p^{-1}$, which remains a tiny fraction (<0.001) of the dynamical timescale of a GRB

⇒ theory + simulations on microphysical scales often idealize the source...
 ... while phenomenology on macrophysical scales idealize the microphysics...

Acceleration – a luminosity bound

gamma-ray bursts: L_{bol} ~ 10⁵² ergs/s

... many (many) others for heavy nuclei?

Acceleration – a luminosity bound

(e.g. Lovelace 76, Norman+ 95, Blandford 00, A generic case: acceleration in an outflow Waxman 05, Aharonian+ 02, Lyutikov & Ouyed 05, Farrar & Gruzinov 09, M.L. & Waxman 09) \rightarrow acceleration timescale (comoving frame): $t_{\rm acc} = \mathcal{A} t_{\rm g}$ \rightarrow A \gg 1 in most acceleration scenarios: e.g. in Fermi-type, $A \sim interaction time/t_g$ / energy gain sub-relativistic Fermi I: $\mathcal{A} \sim (t_{\rm scatt}/t_{\rm g})/\beta_{\rm sh}^2$ and t_{scatt} > t_g (saturation: Bohm regime!) sub-relativistic stochastic: ${\cal A} \sim (t_{
m scatt}/t_{
m g})/eta_{
m A}^2$ sub-relativistic reconnection flow: $\mathcal{A} \sim 10/\beta_{\rm A}$ (on reconnection scales) relativistic Fermi I: ${\cal A} \sim t_{
m scatt}/t_{
m g}$ in shock frame, much more promising? relativistic reconnection: $\mathcal{A} \sim 10$ (on reconnection scales) \dots comparing t_{acc} and t_{dvn} bounds the luminosity of the source to reach UHE: $L_{\rm tot} \ge 0.65 \times 10^{45} \,\Theta^2 \Gamma^2 \mathcal{A}^2 \beta^3 Z^{-2} E_{20}^2 \,{\rm erg/s}$

Energy output of a source:

ightarrow to match the flux above 10¹⁹ eV, $\dot{u}_{
m UHECR}\,\sim\,10^{44}\,{
m erg/Mpc^3/yr}$ (Katz+ 10)

 \rightarrow per source, assuming it is steady: $L_{\text{UHECR}} \sim 10^{43} n_{-7}^{-1} \, \text{erg/s} \quad (n \, \text{in Mpc}^{-3})$

 \rightarrow per transient source: $E_{\text{UHECR}} \approx 10^{50} \, \text{erg} \, \dot{n}_{-6}^{-1} \qquad (\dot{n} \, \text{in} \, \text{Mpc}^{-3} \text{yr}^{-1})$

<u>e.g.</u>: \rightarrow radio-galaxies with L > 10⁴⁵ erg/s, about 1% efficiency

 \rightarrow for the whole radio-galaxy population, nL \sim 3 x 10⁴⁷ erg/Mpc³/yr, typically from sources with L \sim 10⁴³ erg/s...

... if injecting CNO to match flux at 10^{19} eV and if metallicity is ~solar, requires an overall efficiency in high energy CR of a few percent!

if one wants nuclei at >E to circumvent luminosity bound, accounting for the protons accelerated to >E/Z requires an energy input higher by M_p/M_z ...

 \Rightarrow shock dissipation as an ideal mechanism to channel a sizable fraction of the source luminosity at UHE...

Including radiation backgrounds:

e.g. « converter » mechanism, which sustains Fermi-type acceleration through charged – neutral conversions due to photo-interactions (Derishev+ 03)

Including magnetic annihilation:

e.g. particle acceleration at the demagnetized termination shock of PWNe through reconnection of the striped wind (Lyubarsky 03, Sironi +11)

Beyond MHD, shocks in superluminal e.m. waves:

conversion of the incoming entropy wave into a superluminal e.m. wave, destabilized in the shock precursor... (Arka, Kirk 12; Kirk+ coll.)

Corrugation of the shock front:

deformation of the shock front, converting incoming ordered magnetic energy into downstream turbulence... (ML+16, ML 16)

Acceleration (theory):

 \rightarrow many possible acceleration scenarios to extreme energies... but:

- most rely on poorly controlled parameters or assumptions, most ignore the backreaction of accelerated particles...

 microphysical scales of acceleration << macroscopic scales of the source, so extrapolation is needed...

 \Rightarrow a modern era for acceleration scenarios, combining numerical simulations with theory and inference from experimental data...

→ relativistic shocks as sources of UHE particles are motivated by acceleration timescale and high efficiency (if/when acceleration is operative!)...

bound on magnetic luminosity: $L_B \gtrsim 10^{45} \text{ A}^2 \text{ Z}^{-2} \text{ E}_{20}^{-2} \dots \text{ erg/s}$

 \rightarrow acceleration of protons to ultra-high energies in relativistic shocks:

either mildly relativistic shocks (GRB internal shocks, blazar internal shocks, trans-relativistic supernovae)

or magnetized relativistic shocks with some extra source of dissipation?