Mass Composition Studies with the Pierre Auger Observatory

M. Unger for the Pierre Auger Collaboration

photo by S.J. Saffi, University of Adelaide

The Pierre Auger Observatory

Air Shower Detection with the Pierre Auger Observatory

Energy Spectrum of UHECRs

exposure at UHE: $(5.34 \pm 0.13) \times 10^4$ km² sr yr

Mass Composition Studies

(a) Longitudinal Development of Air Showers

Average Shower Maximum vs. Energy

 $\langle X_{
m max}
angle \propto D_{
m 10} \log{(E/A)}$ (mass A, energy E, elongation rate $_{
m 10}$ \sim 54 - 64 g/cm²/decade)

[6 of 24]

Average Shower Maximum vs. Energy

 $\langle X_{
m max}
angle \propto D_{
m 10} \log (E/A)$ (mass A, energy E, elongation rate $_{
m 10} \sim$ 54 - 64 g/cm²/decade)

Average Shower Maximum vs. Energy

 $\langle X_{
m max}
angle \propto D_{
m 10} \log{(E/A)}$ (mass A, energy E, elongation rate $_{
m 10}$ \sim 54 - 64 g/cm²/decade)

Standard Deviation of X_{max}

•
$$\sigma(X_{\max})^2_A = \lambda^2_A + \sigma(X_{\max} - X_{\text{first}})^2_A$$

$$\ \, \bullet \ \, \sigma(X_{\max})_{\rho} > \sigma(X_{\max})_{A} > \sigma(X_{\max})_{\rho}/\sqrt{A}$$

mixed composition:

$$\sigma(X_{\max})^2 = \langle \sigma_i^2 \rangle + \left(\left\langle \langle X_{\max} \rangle_i^2 \right\rangle - \langle X_{\max} \rangle^2 \right)$$

Standard Deviation of X_{max} vs. Energy

Standard Deviation of X_{max} vs. Energy

Average Shower Maximum: Comparison to Telescope Array

Auger-TA Working Group on Composition (UHECR conference series)

UHECR16, Kyoto

[12 of 24]

Comparison to Telescope Array

 $\langle \Delta \rangle = (2.9 \pm 2.7 \text{ (stat.)} \pm 18 \text{ (syst.)}) \text{ g/cm}^2$

Fit of X_{max} Distributions

Pierre Auger Coll., PRD 90 (2014) 12, 122006

Fit of X_{max} Distributions

Pierre Auger Coll., PRD 90 (2014) 12, 122006

Mass Composition Studies

(b) Correlation of X_{max} and Ground Signal

Correlation of Xmax and Ground Signal

 $18.5 < \lg(E/eV) < 19.0, X_{max}^*/S^*(1000)$: scaled to $10^{19} eV$

Correlation of X_{max} and Ground Signal

 $18.5 < \lg(E/eV) < 19.0, X_{max}^*/S^*(1000)$: scaled to $10^{19} eV$

^{[17} of 24]

Correlation of Xmax and Ground Signal

 $18.5 < \log(E/eV) < 19.0, X_{max}^*/S^*(1000)$: scaled to $10^{19} eV$

Mass Composition Studies (c) Surface Detector Data

Muons in Air Showers

R. Ulrich, APS 2010

- muons from π^{\pm} decay at late stage of cascade ($\lambda_{dec} \sim \lambda_{int}$)
 - $\rightarrow\,$ number of generations \sim 6 at 10^{19} eV
 - $\rightarrow\,$ amplified sensitivity to hadronic interactions
- X_{max} is dominated by first interaction

Muon Production Depth

Pierre Auger Coll., PRD D90 (2014) 1, 012012, erratum PRD92 (2015) no.1, 019903

Muon Deficit in Models?

Summary: Mass Estimates with X_{max}

Outlook: Upgrade of the Pierre Auger Observatory

additional scintillators (4 m²)

 X_{max} determination:

muon determination:

[24 of 24]