Extragalactic Cosmic Rays above the Iron Knee

Based on:

"Indications of Negative Evolution for the Sources of the Highest Energy Cosmic Rays", **Phys.Rev. D92 (2015) 6, 063011 [**astro-ph/**1505.06090]**

"Evidence for a Local "Fog" of Sub-Ankle UHECR", **Phys.Rev.D94 (2016) 4, 043008 [**astro-ph/**1603.03223]**

Andrew Taylor

Transition Energy Probes

Anisotropy constraint: Giacinti et al.- astro-ph/**1112.5599** Pierre Auger Collab.- astro-ph/**1212.3083**

Why Consider Super-Ankle CR to Understand the Galactic/Extragalactic Transition?

- Since the ankle feature appears at an energy of ~10^{18.6} eV, a new extragalactic source class is presumed to begin to dominate here (in the first instance)
- Information obtained from investigations into the super-ankle sources may provide new insights into Galactic-Extragalactic transition energy

3

Composition- Consider Nuclei?

Assumptions on Source Population

$$\frac{dN}{dV_{C}} \propto (1+z)^{n}$$

 $\mathbf{z} < \mathbf{z_{max}}$

 $n=-6,\,-3,\,0,\,3$

 $rac{\mathrm{d}\mathbf{N}}{\mathrm{d}\mathbf{E}} \propto \mathbf{E}^{-lpha} \exp[-\mathbf{E}/\mathbf{E}_{\mathbf{Z},\mathbf{max}}]$

$$\mathbf{E}_{\mathbf{Z},\mathbf{max}} = (\mathbf{Z}/\mathbf{26}) \times \mathbf{E}_{\mathbf{Fe},\mathbf{max}}$$

Note-magnetic field horizon effects are neglected in the following. This amounts to assuming: $d_s < (ct_H \lambda_{scat})^{1/2}$ ie. the source distribution may be approximated to be spatially continuous (also note, presence of t_H term comes from temporally continuous assumption)

81 243 Mpc

MCMC Likelihood Scan: Spectral + Composition Fits

MCMC Likelihood Scan: "Soft" Spectra Solutions

MCMC Results Table

		n = -6	n = -3		n = 0		n = 3	
Parameter	Best-fit Value	Posterior Mean & Standard Deviation						
f_p	0.03	0.14 ± 0.12	0.08	0.15 ± 0.13	0.17	0.17 ± 0.16	0.19	0.20 ± 0.16
$f_{ m He}$	0.50	0.21 ± 0.17	0.42	0.17 ± 0.16	0.53	0.20 ± 0.17	0.32	0.23 ± 0.20
$f_{ m N}$	0.40	0.50 ± 0.18	0.42	0.51 ± 0.19	0.29	0.47 ± 0.19	0.43	0.45 ± 0.21
$f_{ m Si}$	0.06	0.11 ± 0.12	0.08	0.12 ± 0.13	0.0	0.11 ± 0.12	0.06	0.078 ± 0.086
$f_{ m Fe}$	0.01	0.052 ± 0.039	0.0	0.053 ± 0.042	0.01	0.050 ± 0.038	0.0	0.044 ± 0.034
α	1.8	1.83 ± 0.31	1.6	1.67 ± 0.36	1.1	1.33 ± 0.41	0.6	0.64 ± 0.44
$\log_{10}\left(\frac{E_{\rm Fe,max}}{\rm eV}\right)$	20.5	20.55 ± 0.26	20.5	20.52 ± 0.27	20.2	20.38 ± 0.25	20.2	20.16 ± 0.18

Flatter spectra preferred for negative source evolution Hard spectra preferred for source evolution following that of the SFR 10

High Spectral Peaked Blazar Evolution

Regardless of where the energy is injected (ie independent of source z), the arriving flux possesses a ~universal shape

Secondary (Guaranteed) Gamma-Ray Fluxes From >10^{18.6}eV UHECR Component

Does a Separate Class of Extragalactic Source Dominate at Sub-Ankle Energies?

Cascade Contribution from Second Source Population

The Isotropic Gamma-Ray Background

Lat. Cut + Gal. Foreground Removal

-+ Removal of Res. Blazars
-+ Removal of Unres. Blazars

Using Photon Fluctuation Analysis, the Fermi collaboration pushed a factor of ~10 below the 2FHL sensitivity

$$rac{{f d}{f N}}{{f d}{f S}} \propto {f S}^{-lpha}$$

$$\mathbf{I} = \int \mathbf{S} rac{\mathbf{dN}}{\mathbf{dS}} \mathbf{dS}$$

"Our analysis permits us to estimate that point sources, and in particular blazars, explain almost the totality (86⁺¹⁶-14 %) of the >50 GeV EGB."

Fermi Collaboration (2015)- astro-ph/1511.00693

The Origin of Protons Below the Ankle

Note- IGRB contribution from cascade losses rather independent of source spectra

17

....and Radio Galaxy Contributions Still Not Removed

From astro-ph/1304.0908 (Di Mauro et al. 2013) ¹⁸

The Origin of Protons Below the Ankle

If only 1% of EGB comes from subankle UHECR (present limit is 14%), we will be forced to look extremely locally for their sources

An Alternative Interpretation of the Negative Source Evolution Result

At high energies, the negative evolution scenarios help resolve both:

- "hard spectrum"
- "IGRB over-production" problems.

Alternatively, these scenarios may simply be encapsulating the fact that we've a local dominant source and our local value for UHECR is well above the "sea level"!

Conclusions

- A negative source evolution allows for an E⁻² type spectra to explain CR above the ankle (such an evolution is observed for the HBL blazars)
- The positive evolution of a separate source class, can account for sub Ankle extragalactic cosmic rays (which again allow an E⁻² type spectra for this component)
- A new estimation of the diffuse gamma-ray background limit excludes positive evolution scenarios for these cosmic rays.
- New diffuse gamma-ray background limits are challenging for both positive and no-evolution scenarios which account for sub-Ankle extragalactic protons
- These results suggest that UHECR exist in a local fog, with the value locally being well above the "sea level".
- An "understanding" of UHECR sources is possible through an understanding of AGN gamma-ray emission at very high energies! 21

The Promise of the IGRB

Each of these sectors wants to dominate the diffuse gamma-ray background....understanding this background holds huge potential for understanding these sectors.

Future Directions for IGRB Studies......TeV Bright AGN cascade and radio galaxy contributions

The Level of the Constraint(s)

Note considerable difference in position of upper limit!... "A contradiction with Ref. [31] is mainly explained by using of model B for galactic contribution in the Fermi LAT experiment. "

Attention is drawn to level of highest energy upper limit.

Why Conservative?.....Cascade Contributions from TeV Photons

Only takes ~100 such objects to produce 100% of the EGB

The Origin of Protons Below the Ankle

SFR evolution scenario

25

Secondary Neutrino Fluxes

Proton Fed Blazar Emission Model

- Kusenko & Essey have spearheaded the suggestion that some TeV blazars are powered through proton losses in the presence of weak (10⁻¹⁵ G) extragalactic magnetic fields
- If this is the case, some subset of the component of resolved/ unresolved blazars should not be removed from the EGB
- However these blazars would not be expected to show short time-scale variability structure

Cascade Contribution Limit

Revised Cascade Contribution Constraint

— nuclei above 10^{18.6} eV

The n=3 scenario sits in conflict with this new constraint.

conservative flux upper limit at 50 GeV from astro-ph/1603.03223, Liu et al.

differential cascade limit taken from astro-ph/1511.00688, Bechtol et al.

Similar Evolution Observed for Non-Blazar AGN?

Radio Loud AGN are suggested to have positive evolution (n=2) up to z=0.5, followed by negative evolution (n=-4) beyond this.

From astro-ph/1506.06554 (Padovani et al. 2015)

Injection Species Contributing to Arriving Flux

Other Cross-Checks

A comparison is shown between the kinetic equation solver of Markus Ahlers and Oleg Kalashev

Gelmini et al. astro-ph/1107.1672

General Problem for Cascade Contribution?

Fermi Collaboration (2015)- astro-ph/1511.00693

"Our analysis permits us to estimate that point sources, and in particular blazars, explain almost the totality (86^{+16}_{-14} %) of the >50 GeV EGB."

$$egin{split} X_s &= rac{d_s}{(ct_H l_c)^{1/2}} \ &= 0.1 \ \left(rac{d_s}{10 \ \mathrm{Mpc}}
ight) \left(rac{1 \ \mathrm{Mpc}}{l_c}
ight)^{1/2} \end{split}$$

"Realistic" field structures/strengths, however, don't provide sufficient suppression, Alves Batista et al. astro-ph/1407.6150

Sources of Cosmic Ray Nuclei Must be

Historical Debate about the Nature of the Ankle Feature

From Berezinsky et al. (2006) astro-ph/0204357 "Dip Model"

39